谁发明了圆周率
A. 圆周率是谁发明的
纠正一下,圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。
B. 谁发明了圆周率
祖冲之首次将圆周率算到小数点7位数 领先欧洲近千年
C. 圆周率是谁发明的
祖冲之,地球人都知道的问题你也敢提 是祖冲之算出圆周率是在3.1415926和3.1415927之间
D. 圆周率是谁发明的
圆周率是客观存在的规抄律,不能发明。
圆周率也不是祖冲之发现的,因为更古的时候,说是径一周三,说明当时人们已经有圆周率的观念,但是不精密。
祖冲之计算得出了当时世界上最精密的数值。除了大家知道的小数点后七位数的圆周率外,他还给出了约率
22/7,密率355/113。而且,至今数学家无法推测这个极其精密的约率他是如何算出来的!
佩服吧?老祖宗厉害哦!
补充:
楼下“倔……强 ”说“祖冲之发现的,但是不准确”,此言差矣!
1,古人说“径一周三”,就是说,圆周率的值是3,虽然不精确,却是已经发现了。可见祖冲之并不是圆周率的发现者。
2,祖冲之计算的值是3.1415926<π<3.1415927,难道还不精确? 再说,祖冲之是正确地用内接正多边型计算[月内]值,用外接正多边型计算盈值,就是现代用电脑计算圆周率,其方法也仍然如此啊。
我不明白“倔……强 ”说祖冲之不精确的根据何在?是不是又有什么考古新发现证明他的观点?
E. 是谁发明的圆周率
先纠正一下,圆周率是发现的,不是发明的。发现它的是三国时期著名数学家‘刘徽’
在三国时期,著名数学家‘刘徽’用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。
F. 圆周率是谁发明的 历史上圆周率的发明人是谁
圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。
中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π²除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。
中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。刘徽给出π=3.14的圆周率近似值,刘徽在得圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。
数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似,在之后的800年里祖冲之计算出的π值都是最准确的。
(6)谁发明了圆周率扩展阅读:
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。
2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。
G. 圆周率是谁发明的
圆周率是我国古代数学家祖冲之首先计算出其准确值在3.1415926和3.1415927之间,并可以用分数355/113来表达,准确到小数点后第7位。
圆周率,圆的周长与直径的比值。
1、圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sinx= 0的最小正实数x。
2、圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
3、1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2]。
H. 圆周率是谁发明的
圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。 求无理数π的近似值,我国古代数学家早已作出了巨大的贡献,在东汉初年的数学书《周髀算经》里已经载有“周三径一”,称之为“古率”,就是说,直径是1的圆,它的周长是3. 到了西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是92 29=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.) 到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率. 到南北朝时代的祖冲之(公元429年—500年),他已推算出 3.1415926<π<3.1415927. 也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即22 7及355 113,分别称为π的约率和密度. 在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值.
I. 圆周率谁发明的
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph
Van
Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph
数;其二是英国的William
Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph
Van
Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,
多数是为了验证计算机的计算能力,还有,就是为了兴趣。
J. 圆周率是谁发明的
圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。
1、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
2、中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.
3、南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶)。
4、在西方直到1573才由德国人奥托得到经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
(10)谁发明了圆周率扩展阅读:
国际圆周率日
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”