当前位置:首页 » 新型创造 » 红外线的发明

红外线的发明

发布时间: 2021-03-02 05:05:41

『壹』 从蛇身上发明了红外线的故事是什么

响尾蛇毒性很大,它的眼睛对可见光几乎失去了作用,然而它却能敏捷地捕捉田鼠及其他小动物。经过人们的研究发现,原来这种捕捉能力应归结于响尾蛇的热感受器——“热眼”。“热眼”长在蛇的眼睛和鼻孔之间叫颊窝的地方,颊窝一般深5mm,只有1cm长,呈喇叭形,外面有热收集器能够接收小动物身上发出来的红外辐射,并把外界温差和红外线通过神经反映给大脑,大脑发出相应的“命令”,引导毒蛇去猎取食物。

4 0年代末期,人们研制出一种响尾蛇“空对空导弹”,其功能与响尾蛇相同。它是利用硫化铅作红外敏感元件,接收喷气式飞机机尾喷管发出的波长为1—3微米的红外辐射流,引导导弹从飞机尾部进行攻击,它只需接收到热源的存在和方位,并不要形成目标的热象图。在1982年6月的中东战争中叙利亚军方损失的20多架飞机几乎全部是“响尾蛇”空对空导弹击落的。

红外制导大多数是采用被动寻的制导系统。红外制导的导弹在发射后利用目标本身的红外辐射进行自动瞄准和跟踪,直至最后命中目标。目标的红外辐射主要来自其动力部分,如飞机与火箭的喷管、坦克的发动机、舰船的锅炉及烟囱等。导弹的红外制导原理如图所示,来自目标的红外辐射透过弹头前端的整流罩,由光学系统会聚后投射到红外探测器上(光敏元件),然后将红外辐射由光信号转变为电信号,再经电子线路和误差鉴别装置,形成作用于舵机的飞行控制信号,使导弹自动瞄准、跟踪和命中目标。这种导弹不受恶劣天气的影响,白天黑夜都可以使用,不必由人参与制导。其缺点是对目标本身的辐射或散射特性有较大的依赖性,需要在背景环境中将目标检测出来。

有一种红外热成象制导反坦克导弹。用它攻击坦克时就犹如警察戴着夜视眼镜在夜间追捕已发现的逃犯那么容易。这是因为在导弹头部的导引头中装有大小与指甲差不多的红外列阵探测器,它的功用是探测目标和导弹的相对位置,在导弹发射前对战场进行搜索,一旦发现目标,就象照相机那样摄取下目标图象,贮存到装在导弹上的微型计算机中,作为基准图象。导弹发射后,红外列阵探测器始终“盯着”目标。在导弹飞行中,以大约每秒25帧的速度连续摄取目标图象,并依次逐帧地把图象送入微型计算机中,与基准图象进行比较;如有差异,说明导弹偏离了飞行弹道,计算机随之就把这种代表导弹飞行偏差的差异变成电信号,指令导弹舵机动作,把导弹修正到正确的弹道上来。随着导弹越来越接近目标,红外探测器摄取的图象就越来越大,如果这时导弹在运动或转弯,相对位置的变化会使摄取的图象形状、大小发生变化。当探测器所摄得的图象不能简单地与基准图象进行比较时,还可以靠弹上的计算机软件来判别。这种巧妙的跟踪技术是红外列阵探测、微型计算机与图象处理技术三者的结合,具有像人一样的感觉和思维的能力。

红外制导系统的分辨力高、抗干扰性强、设备简单、重量轻、成本低,由于采用被动探测,无需红外辐射源,所以隐蔽性也较好。

导弹发射后,母机驾驶人员可以不必再管导弹,而驾驶母机退出战区,由导弹独立地飞向目标,有利于消灭敌人、保全自己。而且,导弹越接近目标,来自目标的红外辐射越强,制导精度就越高,大大提高了命中率。

据不完全统计,目前各国已生产和试制的红外制导导弹(包括空对空、空对地、地对空和反坦克导弹等)已超过50种。例如,美国“响尾蛇”、法国“魔术”、苏联“环礁AA—2”等空对空导弹和美国“小懈树”、苏联“环礁--7”等防空导弹均采用红外自动寻的制导技术。各国还正在努力发展机动性能强和敌我识别能力高的红外制导导弹。

『贰』 红外线是谁发明的

【英国物复理学家F. W. 赫胥尔】制
1800年英国物理学家F. W. 赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。著名的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与绝对温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。

『叁』 红外线是人类根据哪种动物发明的

红外线是人类根据蛇发明的,如红外线响尾蛇导弹等就是科学家模仿蛇的“热眼”功能和其舌上排列着一种似照相机装置的天然红外线感知能力的原理,研制开发出来的现代化武器。

『肆』 红外线是谁发明的武器装备

英国物理学家F. W. 赫胥尔
1800年英国物理学家F. W. 赫胥尔发现了红外线,红外线是一种电磁波版,它在电磁波连续频谱中权的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。著名的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与绝对温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。

『伍』 红外线是谁发明的

人眼能看到的光称为可见光,主要集中在0.38微米~0.78微米附近的谱段内。其中又可细分为紫、蓝、青、绿、黄、橙、红七色光。那么在红光以后就没有其它光线了吗?其实不然,红光以后很长一段频率就是红外线,只是人眼看不到而已。1800年,英国物理学家赫胥尔在研究各种色光的热量时,有意地把暗室中唯一的窗户用木板堵住,并在板上开了一条矩形的孔,孔内装一个分光棱镜。当太阳光通过这个棱镜时,便被分解成彩色光带。在试验中,他突然发现一个奇怪的现象:放在光带红光外的温度计,比室内其它温度计的指示值都要高。经过多次试验,这个所谓含热量最多的高温区,总是位于光带最边缘处红光的外面。于是赫胥尔宣布,太阳发出的光线中除可见光外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,因而叫做红外线。 红外线其实也是一种电磁波,其波长范围从0.78微米到1000微米。为了研究上的方便,红外线被科学家划分为三个波段,近红外:波长为0.78微米~3.0微米,中红外:波长为3.0微米~20微米,远红外:波长为20微米~1000微米。 红外线的发现标志着人类认识自然的又一次飞跃。 红外线也是电磁波 大家都知道,收音机接收电磁波可以发出声音,电视机接收电磁波可以显示图象。自然界中五光十色的光线都是电磁波。通过实验发现红外线也是电磁波。 那么,从收音机、电视机接收的电磁波和人眼到的光线以及红外线之间的差别在哪里呢?其根本差别就在于波长范围不同。 我们常用的交流电也是以电磁波的形式沿着导线传播的,它的波长有6000公里,可以说是波长最长的电磁波。收音机接收的电磁波,其波长范围大致是从几百米到几十米,叫做中波或短波。电视机接收的电磁波,波长范围从几米到几厘米,叫做微波。最短的无线电波波长只有几毫米。红外线也是电磁波,其波长范围从0.78微米到1000微米。1微米等于千分之一毫米。为了研究上的方便,红外线还可划分为以下三个波段: 近红外:波长为0.78~3.0微米 中红外:波长为3.0~20微米 远红外:波长为20~1000微米 波长比0.78微米更短的电磁波便是可见光。可见光的波长范围0.38微米到0.78微米。不同波长的可见光颜色不同,其波长与颜色的关系如图1所示。 比可见光波长更短的电磁波是紫外线、X射线、伽马射线和宇宙射线。红外线和无线电波、可见光、紫外线以及各种射线组成了一个连续的电磁波波谱. 红外线的特点 理论分析和实验研究表明,不仅太阳光中有红外线,而且任何温度高与绝对零度的物体(如人体等)都在不停地辐射红外线。就是冰和雪,因为它们的温度也源源高与绝对零度,所以也在不断的辐射红外线。因此,红外线的最大特点是普遍存在于自然界中。也就是说,任何“热”的物体虽然不发光但都能辐射红外线。因此红外线又称为热辐射线简称热辐射。 红外线和可见光相比的另一个特点是,色彩丰富多样,。由于可见光的最长波长是最短波长的1倍(780nm~380nm),所以也叫作一个倍频程。而红外线的最长波长是最短波长的10倍,即具有10个倍频程。因此,如果可见光能表现为7种颜色,则红外线便可能表现70种颜色,显示了丰富的色彩。 红外线透过烟雾的性能好,这是它的又一个特点

『陆』 红外线是如何发现的

黑暗的地方怎么会比明亮的地方“热”呢?这得从两个世纪前说起。

在世纪1800年以前,人们都知道太阳的“白”光可以通过三棱镜被分解为红、橙、黄、绿、蓝、靛、紫七色光。这最早由大名鼎鼎的年顿在1666年实验成功。100多年过去,人们再也没有想过,太阳光除这七色光外还有,或没有什么了。

可是,出生在德国的英国物理学、天文学家赫谢耳(1738~1822)却突发奇想,在这七种可见光的“外”面,即看不见的区域,还有什么“东西”呢?于是他在1800年做了下面的实验。

他让阳光通过三棱镜后折射到后面的白色纸屏上,当然也和牛顿一样,得到了七色彩带,所不同的是,这次他还将9支完全相同的温度计在每种色区内放1支,最后两支则分别放在红光以“外”和紫光以“外”附近区域。在阳光折射的七彩光照射下,七个可见光区内的温度计温度都升高了,例如红、绿、紫光区各升高5℃、3℃和2℃;但紫光外区域的温度却未升高。他同时还发现,红光外区域温度不但升高了,而且比红光区升得还高,升高达到7℃!这使他大吃一惊——那里并没有光线照射啊!

那是不是离红光区更远的区域温度会升得更高呢?于是他又将温度计移到离红光区更远的区域,但这时温度却不再增加,反而降到室温。经过反复实验研究,他终于判定,红光外附近区域存在“红外线”或“红外辐射”。他还用实验证明,红外线不管来自地球、太阳或其他何处,都和可见光一样遵守着折射、反射定律。但比可见光更容易被空气吸收。由于它“不可见”,因此在刚发现时被称为“不可见辐射”。

红外线按波长不同还可分为近(波长0.75~3微米)、中(波长3~30微米)、远(波长30~1000微米)三种。任何物体在任何温度下都要不停地向外辐射红外线。

一般来说,物体温度越高,辐射红外线的能力就越强,物体在单位表面积辐射红外线能量的总功率与它自身热力学温度的4次方成正比。利用这一规律可制成红外测温仪器。当一些气体分子的运动频率与红外线的频率相当时,这些气体——例如空气中的二氧化碳、水汽,便会把红外线的能量吸收掉。因而,来自太阳的某些红外线便会被这些气体吸收;而未被气体吸收透过大气的红外线波段便称为“大气红外窗”或“红外大气窗”。在大气吸收红外线这一原理的启发下,人们得到了红外线应用的又一成果——红外气体分析。用这一技术可测出空气中的一氧化碳、二氧化碳、氧化亚氮、甲烷、乙烯等气体。这在工业、农业、环境监测、医学检验和其他科研中都有重要作用。红外线还有热效应强、易透过云雾烟尘的特点。所以加热、烘干、遥测、遥感、金属探伤、热像仪诊病、导弹、夜视、寻找地热和水源、监视森林火情、估计农作物长势和收成、气象预报、“红外显微镜”(用于测量温度)等都是它的应用实例。除太阳外,宇宙中许多天体都辐射出大量的红外线,科学家们把“红外望远镜”发射到外层空间,避免了大气对红外线的吸收,更能准确地探测到这些天体发出的红外线。

赫谢耳发现红外线后,引起了人们进一步的思考:为什么紫光以外区域温度计的示值不升高呢?是不是这里没有不可见光呢?如果有,又是什么呢?又能用什么方法探测呢?

德国物理学家里特尔(1776或1778~1810)是其中别具慧眼的一个。他意识到,用物理方法不能探测紫光外区域的情况,那就用化学方法。1810年,他将一张浸有氯化银溶液的纸片,放在前述七色彩带紫光区域以外附近的区域,经过一段时间后,发现纸片上的物质明显地变黑了。他研究后指出,这是由于纸片受到一种看不见的射线照射的结果。并把它称为“去氧射线”,即现在人所共知的“紫外线”。他还正确地确认了各种辐射对氯化银分解作用的大小实际上就是能量的大小,从而判断出紫外线的能量比紫光的能量要大。

一切高温物体都发出紫外线。它的主要作用是化学作用。紫外线照射能辨出细微的差别,例如可清晰地分辨出留在纸上的指纹。它的荧光效应可用于照明的日光灯和杀虫的黑光灯。其杀菌作用可见于消毒和治病。不过,过多的紫外线有害于人体——照射强的日光,不穿戴防护用品进行电弧焊接操作,都应避免。

通过发现红外线的故事,和对比红外线、紫外线不同的发现方式,我们可得到以下知识或启示。

首先,“光”和“热”是两个不同的概念。“光”强不一定“热”大;正因为如此,我们在研究光源时,要的是“热”不大的冷“光”源。“热”大,不一定“光”强;我们使用的红外线取暖器就是如此。

其次,科学发明发现有不同的模式和方法。如果里特尔也按赫谢耳探测紫外线那样,用物理方法来探测紫外线的话,那他将那样一无所获——赫谢耳未能发现紫外线的遗憾就在这儿。对于懒人来说,常常希望别人告诉他一种“万能”的灵丹妙药,以便敲开科技发明发现或致富之门。我们只能遗憾地告诉他:通向这个门的道路有很多条,但要您自己去走,灵丹妙药要自己去寻!这正如一条西班牙谚语所说:“‘上帝’说,你要什么便取什么,只是要付出相当的代价。”

『柒』 红外线是怎么被发现的

红外线的发现过程如下:
红外线是太阳光线中众多不可见光线中的一种,由英国科学家赫歇尔于1800年发现,又称为红外热辐射,热作用强。他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒介。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为(0.75-1)~(2.5-3)μm之间;中红外线,波长为(2.5-3)~(25-40)μm之间;远红外线,波长为(25-40)~l500μm 之间。
美国太空总部(NASA)研究报告指出,在红外线内,对人体有帮助4-14微米的远红外线,从内部发热,从体内作用促进微血管的扩张,使血液循环顺畅,达到新陈代谢的目的,进而增加身体的免疫力及治愈率。 但是根据黑体辐射理论,一般的材料要产生足够强度的远红外线,并不容易,通常必须藉助特殊物质作能量的转换,将它所吸收的热量经由内部分子的振动再发放较长波长的远红外线出来。
红外线(Infrared)是波长介于微波与可见光之间的电磁波,波长在760纳米(nm)至1毫米(mm)之间,比红光长的非可见光。高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。含热能,太阳的热量主要通过红外线传到地球。我们把红光之外的辐射叫做红外线(紫光之外是紫外线),肉眼不可见。

『捌』 红外线是谁发明的

1800年的一天早晨,年过花甲的英国天文学家赫歇尔通过桌上的一块三棱回镜,正在欣赏太阳答光透过它形成的七色彩带。

忽然,他想:“阳光带有热,可是组成太阳光的七种单色光中,哪一种携带的热最多呢?”他灵机一动:“如果测得了每种光的温度,不就知道了吗?”

赫歇尔在实验室墙上贴上一张白纸,并让七色光带照在纸屏上。在光带红、橙、黄、绿、蓝、靛、紫以及红光区外和紫光区外的位置上各挂一支温度计。他发现绿光区的温度上升了3℃,紫光区的温度上升了2℃,紫光区外的那支温度计的读数几乎没有变化……然而令他吃惊的是,红光区外的那支温度计的读数竟上升了7℃。

赫歇尔分析认为,在红光区外一定还有某种人眼看不见的光线,而且这种光线携带的热量最多。

后来,科学界把这种看不见的光线命名为红外线,而赫歇尔也因此留名科学史册。

『玖』 红外线怎么发明的

红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现回,又称为红外热辐射,他将太阳光答用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837