新型分子马达
㈠ 分子马达是什么
分子马达是一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变,ATP水解的能量转化为机械能,引起马达形变,或者是它和与其结合的分子产生移动。就是说,分子马达本质上是一类ATP酶。例如肌肉中的肌球蛋白会拉动粗肌丝向中板移动,引起肌肉收缩。而另外两种分子马达:驱动蛋白和动力蛋白,它们能够承载着分子“货物”——如质膜微粒,甚至是线粒体和溶酶体,在由微管构成的轨道上滑行,起到运输的作用。
肌球蛋白是微丝结合蛋白,最早发现于肌肉组织,1970年代后逐渐发现许多非肌细胞的肌球蛋白。其家族有13个成员,每个成员在结构上都分为头,颈和尾部三个部分,形似豆芽,而组成上则有轻重两种链。其中的调节轻链是肌球蛋白接受调解的位点,就是说,调节轻链的磷酸化/去磷酸化状态影响着肌球蛋白的活性。其中Ⅰ和Ⅱ型是研究得最彻底的分子马达。一些细胞具有突变的肌球蛋白,它们能正常伸出伪足,但是却不能成功移动。Ⅰ型肌球蛋白是单体,Ⅱ型和V型则是二聚体。趋向微丝的+极运动。蛋白的头部能就尾部作屈伸运动,并在“屈”的时候拉动微丝相对向后运动。肌球蛋白除了参与肌肉收缩外,还被认为是细胞迁移所需的重要分子之一。肌球蛋白非常可能参与了“前进的四个步骤”里面胞体收缩一步。另外,在细胞突出一端也可观察到肌球蛋白,它可能是帮助运输粘着所需要的蛋白质,提高粘着效率。
㈡ 分子马达的组成策略
分子马达靠很小的增值来工作,转入蛋白质构象的改变从而能进行有引导的运动,它需要一条引导马达装配的运动轨道进行有规则的运动来通过一段距离。实际上,我们以前已经遇到过一类分子马达,它利用我们即将涉及的分子机器,即沿着DNA和 RNA轨迹运动的解螺旋酶。沿重复同一亚单位组成的蛋白丝(如肌纤蛋白和微管)--在高度亲缘关系和低亲缘关系间的马达蛋白质的循环,是为使丝状轨道响应于ATP的结合,水解。ATP的每一次结合、推动、释放,都是产生运动的机制。
也存在一种完全不同的策略,就象大肠杆菌之类的细菌那样用来产生运动,一套鞭毛扮演着螺旋桨,在细菌细胞膜中做马达旋转,这个旋转的马达被一个跨膜的蛋白质浓度梯度所驱动,代替被ATP水解所驱动,一套蛋白质浓度梯度去转动运动的机理类似于ATP合成酶的F0亚基的作用.但是,储存生化能量的主要模式都是ATP和离子浓度梯度,被渐进式的利用去驱动有机分子运动.
真核细胞含有三种主要的马达蛋白家族:肌球蛋白、kinesins蛋白和动力蛋白。初一看,这些蛋白家族好像彼此很不同。在肌肉中的肌球蛋白,开始时被描绘成有它自己的作用基础,沿着肌纤蛋白的丝运动,肌肉肌球蛋白包括两个拷贝,它们都有一个87kd分子团的重链,一个必需的轻链,和一个起调节作用的轻链。人类基因似乎能编码超过40种截然不同的肌球蛋白,在肌肉收缩中有些功能和另一些参与不同种类的其他过程。kinesins蛋白在蛋白质、囊泡和沿微管的细胞器转运中起作用,包括染色体分离。kinesins蛋白常包括两个拷贝,一个是重链,一个是轻链,它的重链大约只有肌球蛋白长度的一半。人类基因至少能编码40种kinesins蛋白。在一些真核细胞中,动力蛋白能驱动纤毛和鞭毛的运动,和其他作用蛋白相比,动力蛋白较大,有个大于500kd的分子团重链,人类基因似乎能编码大约10种动力蛋白。
比较肌球蛋白,kinesins和动力蛋白的氨基酸序列,并没有出现这些蛋白质家族之间有意义的关系,但是,在确定它们的三维结构之后,肌球蛋白和kinesins家族的成员之间被发现有显著的相似性,特别是肌球蛋白和kinesins都包含同源的P-环NTP酶核心部位,这些在G蛋白中也存在。动力蛋白重链的序列分析揭示出它是P-环NTP酶的AAA子家族的一个成员,我们以前在19S 蛋白解体系统中遇到过该子家族,动力蛋白有6个序列编码一个沿着它的长段排列的P-环NTP酶整环。从而,可以利用有关G蛋白和其他P-环NTP酶的知识来分析这些马达蛋白的运动机理。
㈢ 分子马达和马达蛋白是一回事儿吗
来分子马达(molecular motor),生命源体的一切活动,包括肌肉收缩、物质运输、DNA复制、细胞分裂等,追踪到分子水平都是来源于具有马达功能的蛋白质大分子做功推送的结果,因此它们被称为分子马达或蛋白质马达。
所以分子马达和马达蛋白就是一个东西。
(参考资料:网络)
㈣ 细胞内的分子马达主要有哪些它们有哪些相同点
微管马达蛋白和肌球蛋白
微管马达蛋白有驱动蛋白(Kinesin)和动力蛋白(Dynein)两个家族;
肌球回蛋白又称微丝答马达蛋白
相同点-----------这三类马达蛋白都是以细胞骨架为路径来运输物质
不同点-----------其中肌球蛋白在微丝运输物质,而驱动蛋白和动力蛋白则在微管上运输物质。
㈤ 分子马达是什么
分子马达(molecular motor),是美国康奈尔大学研究人员在活细胞内的能源机制启发下,制造出的一种马达专.这种微型马属达以三磷酸腺苷酶为基础,依靠为细胞内化学反应提供能量的高能分子三磷酸腺苷(ATP)为能源.
分子马达,又名分子发动机,是分布于细胞内部或细胞表面的一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变,ATP水解的能量转化为机械能,引起马达形变,或者是它和与其结合的分子产生移动.就是说,分子马达本质上是一类ATP酶.例如肌肉中的肌球蛋白会拉动粗肌丝向中板移动,引起肌肉收缩.而另外两种分子马达:驱动蛋白和动力蛋白,它们能够承载着分子“货物”-------------如:质膜微粒,甚至是线粒体和溶酶体,在由微管构成的轨道上滑行,起到运输的作用.
㈥ 单DNA分子马达工作原理是什么
科学家曾经利用多个DNA分子制造出了分子马达,但这些马达存在着效率不高、难以控制的缺专陷。美国属佛罗里达大学教授谭蔚泓和助理研究员李建伟新研制出的分子马达,采用的是人工合成的单个杂交DNA分子。这种分子在一种生物环境中处于紧凑状态,但在生物环境发生变化后,又会变得松弛。谭蔚泓和李建伟进行的实验证实,采用这一原理制造出的单DNA分子马达具有非常强的工作能力,可以像一条虫子一样伸展和卷曲,实现生物反应能向机械能的转变。谭蔚泓等的成果已经在美国《纳米通讯》杂志上发表。
㈦ 依赖细胞质骨架的分子马达有哪些它们如何介导细胞运输
分子马达即分子机械或抄纳米马达(nano-mot-motor,NMM),是由生物大分子构成,利用化学能进行机械做功的纳米系统。
分子马达(molecular motor),是美国康奈尔大学研究人员在活细胞内的能源机制启发下,制造出的一种马达。这种微型马达以三磷酸腺苷酶为基础,依靠为细胞内化学反应提供能量的高能分子三磷酸腺苷(ATP)为能源。
分子马达,又名分子发动机,是分布于细胞内部或细胞表面的一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变,ATP水解的能量转化为机械能,引起马达形变,或者是它和与其结合的分子产生移动。就是说,分子马达本质上是一类ATP酶。例如肌肉中的肌球蛋白会拉动粗肌丝向中板移动,引起肌肉收缩。而另外两种分子马达:驱动蛋白和动力蛋白,它们能够承载着分子“货物”-------------如:质膜微粒,甚至是线粒体和溶酶体,在由微管构成的轨道上滑行,起到运输的作用。
㈧ 什么是分子马达
要想获得微观世界里的可以装配原子的机器,首先我们需要造出它的各个零部件。这一点和我版们日常生活中权所见到的机器的制造没有太大的区别,只不过这回我们要制造的部件要小得多。要想让我们得到的小机器能够工作,必须给它提供动力,这就需要制造一个小马达——分子马达。两位旅美中国学者已经在分子马达研究领域取得新的突破,首次利用单个DNA分子制成了分子马达。这一成果使得纳米器件向实用化方面又迈进了一步。