当前位置:首页 » 新型创造 » 发明递等式

发明递等式

发布时间: 2021-02-19 06:46:33

『壹』 方程是谁发明

方程的发明者是法国数学家韦达。

韦达1540年生于法国的普瓦图(Poitou),今旺代省的丰特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒于巴黎。年轻时学习法律并当过律师。后从事政治活动,当过议会的议员。

在对西班牙的战争中,曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。

韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。

韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

(1)发明递等式扩展阅读:

早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。

公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。

方程中文一词出自古代数学专著《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。

卷第八(一)为:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?

(现今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)

白话翻译:卷第八(一)为:现在有上禾三点,中禾二点,下禾一点,实际上三十九斗;上禾二点,中禾三点,下禾一点,实际上三十四斗;上禾一点,中禾二点,下禾三点,实际上两个十六斗。向上、中、下禾是一点各是多少?

(现在有上等黍三捆、中等黍二捆、下等黍子捆,打出来的饭共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出来的饭共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出来的饭共有二十六斗。问1捆上等人黍、一捆中等黍、1把下等人黍各能打响多少斗黄米?)

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

白话翻译:他回答说:上禾一点,九斗、四分一的一,中禾一点,四斗、四分一的一,下禾一点,二斗、四分之三斗。

方程术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不尽者遍乘左行而以直除。左方下禾不尽者,上为法,下为实。实即下禾之实。

求中禾,以法乘中行下实,而除下禾之实。余如中禾秉数而一,即中禾之实。求上禾亦以法乘右行下实,而除下禾、中禾之实。余如上禾秉数而一,即上禾之实。实皆如法,各得一斗。

白话翻译:方程方法是:设置上禾三点,中禾二点,下禾一点,实际上三十九斗,在右边。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不尽的遍乘左行而以直任。左下方禾不尽的,上为法,以下是真实。实立即下禾的事实。

求中禾,因法乘中走下实,而除下禾的事实。我像中禾持数而一,就是中禾的事实。求上禾也因法乘右边走下实,而除下禾、中禾的事实。我像上禾持数而一,登上禾的事实。实际上都像法,各得一斗。

以上是出自《九章算术》中的三元一次方程组,并展示了用“遍乘直除”来消元以解此方程组。

魏晋时期的大数学家刘徽在公元263年前后为《九章算术》作了大量注释,介绍了方程组:二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。他还创立了比“遍乘直除”更简便的“互乘相消”法来解方程组。

『贰』 方程是谁发明的

方程是法国数学家韦达首创 。十六世纪,随着各种数学符号的出现,法专国数学家韦达创属立了较系统的表示未知量和已知量的符号以后,“含有未知数的等式” ,这一专门概念便出现了。方程史话:一、大约3600年前古埃及人写在纸草上的数学问题中,就涉及了方程中含有未知数的等式。二、公元825年左右中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。三、宋元时期中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于“设未知数x。”所以在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。《九章算术·方程》白尚恕注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。

『叁』 牛顿一生发明了多少东西

艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,网络全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律[1] 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

在经济学上,牛顿提出金本位制度。

在天文学方面,1672年牛顿创制了反射望远镜;他还解释了潮汐的现象,指出潮汐的大小不但同朔望月有关,而且与太阳的引力也有关系;另外,牛顿从理论上推测出地球不是球体,而是两极稍扁、赤道略鼓,并由此说明了岁差现象等。 在物理学上,牛顿基于伽利略、开普勒等人的工作,建立了三条运动基本定律和万有引力定律,并建立了经典力学的理论体系。在数学上,牛顿创立了“牛顿二项式定理”,并和莱布尼兹几乎同时创立了微积分学。在光学方面,牛顿发现白色日光由不同颜色的光构成,并制成“牛顿色盘”;关于光的本性,牛顿创立了光的“微粒说”。 在牛顿的著作《自然科学原理》中,他用数学解释了哥白尼的日心说和天体运动的现象。 牛顿对人类的贡献是巨大的,正如恩格斯所说:“牛顿由于发明了万有引力定律而创立了科学的天文学;由于进行了光的分解,而创立了科学的光学;由于创立了二项式定理和无限理论而创立了科学的数学;由于认识了力的本质,而创立了科学的力学”。为纪念牛顿的贡献,国际天文学联合会决定把662号小行星命名为牛顿小行星。

力学成就

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。[6]

《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。[6]

由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。[6]

牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):

第一定律(即惯性定律)

任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。

第二定律

①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。

牛顿第二定律的六个性质:①因果性:力是产生加速度的原因。②同体性:F合、m、a对应于同一物体。③矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。④瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。⑤相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。⑥独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。

适用范围:①只适用于低速运动的物体(与光速比速度较低)。②只适用于宏观物体,牛顿第二定律不适用于微观原子。③参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)

第三定律

表达式F=-F'(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)

这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。

牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。

牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。

牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。在此把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。

在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。

关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。[4]

艾萨克·牛顿数学成就

牛顿使用过的望远镜

在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的引力理论。[4]

艾萨克·牛顿热学成就

牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。[4]

艾萨克·牛顿天文成就

牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。[4]

艾萨克·牛顿哲学成就

牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。

《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958、2006年三次重印。

『肆』 谁发明的解方程怎样发明的解方程关于发明解方程的小故事

十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"

这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".

十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.

由於那时我国古代文化的势力还较强,西方近代科学文化未能及时

在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这

些学科或概念都只是在极少数人中学习和研究.

十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国

传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟

两人很注重数学名词的正确翻译,他们借用或创设了近四百个数

学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借

用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知

数的等式.

1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传

教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程

式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章

算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在

很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审

查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次

方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.

既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.

『伍』 爱因斯坦发明

1.太阳能电池、防盗报警器和照相机的测光表都是以光电效应为基础的。
2.核能利用了这样一版个物理现象:当权铀原子发生裂变时,总质量的微量损失可以转变成能量,其依据正是爱因斯坦的著名等式E=Mc2。如今,核能为英国提供了25%的电力。
3.全球定位系统之所以能将物体的位置精确到米,正是根据爱因斯坦的相对论对地球卫星发出的信号进行了修正。
4.狭义相对论与量子理论相结合,指出了反物质的存在。科学家们利用正电子,即反物质“电子”,通过X射线层析照相术研究大脑活动。
5.亚原子粒子的特性是相对论的直接结果,其存在可以解释从化学元素的特性到磁铁作用的多种现象。
6.爱因斯坦1916至1917年对光子的研究为人类40年后发现激光奠定了基础。目前激光广泛应用于从DVD到激光打印机的多种产品。

『陆』 方程式是谁发明的

法国数学家韦达首创 .
十六世纪,随着各种数学符号的出现,法国数学家韦达创立了较系统的表示未知量和已知量的符号以后,“含有未知数的等式” ,这一专门概念便出现了.
(摘自九章出版社“数学诞生的故事”)

『柒』 会计等式是谁发明的

具体某个人不可考证 只知道复式记账是意大利佛罗伦萨人在长期经济活动中总结出来的

『捌』 谁发明了方程

一元一次方程式
--- 方程式的由来
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"

这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".

十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.

由於那时我国古代文化的势力还较强,西方近代科学文化未能及时

在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这

些学科或概念都只是在极少数人中学习和研究.

十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国

传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟

两人很注重数学名词的正确翻译,他们借用或创设了近四百个数

学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借

用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知

数的等式.

1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传

教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程

式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章

算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在

很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审

查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次

方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.

既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.

(本文摘自九章出版社之"数学诞生的故事")

『玖』 牛顿的发明

1,反射式望远镜

第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。

他用2.5cm直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45度角的反射镜,使经主镜反射后的会聚光经反射镜以90度角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。



2,光的色散原理

牛顿在1666年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)。色散现象说明光在介质中的速度v=c/n(或折射率n)随光的频率f而变。光的色散可以用三棱镜,衍射光栅,干涉仪等来实现。光的色散证明了光具有波动性。

3,微积分

牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。

牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

4,牛顿运动定律

牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。

5,二项式定理

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837