溴化钾发明
『壹』 照相机是谁发明的
法国巴黎的艾尔丰斯基洛克士公司,制造世界上第一架照相机(1839)。 约公元前370年《墨经》述及针孔成像原理。 1839年8月19日,法国对全世界宣布了美术师L·达盖尔(1787—1851)的摄影术,摄影术发明后,很快就风靡世界,并伴随人类科学技术的发展,物质和精神文明的进步,成为人们工作、学习、生活误乐中必不可少的一个部分,随着时代的前进,她将进一步发展,更好地为人类服务。 最早期的照相机可以上溯到1830~1880年。法国、英国、奥地利、比利时等国生产的滑箱式相机(也称平板相机),用前后两只暗箱移动调焦距,速度用镜头盖控制,感光板是硝化纤维溶于酒精或乙醚的混合液中(火棉胶),将碘化钠(碘化钾)和少量溴化钾放入火棉胶中拌匀再涂布在玻璃板上,再将涂布好的玻璃板放进密封暗箱内硝酸银溶液中,硝酸银与乳剂中碘化钠发生化学反应,形成具有感光作用的碘溴化银,然后装在相机上拍摄(湿板),这就是火棉胶湿板摄影法。我国在上世纪三、四十年代,小照相馆还延用这种办法—在玻璃板上涂碘溴化银乳剂,俗称玻璃底片进行拍摄。 1888年美国的乔治·伊斯曼发明了世界上第一架用胶卷的柯达相机——柯达1号摄影机。 1924年德国莱茨公司(Leiez)发明了第一台35mm莱卡(Leica)相机。 1937年德国生产了世界上第一台35mm单镜头反光相机——阿克塞太。 1959年奥大利“福伦达”公司生产出摄影用变焦镜头。 1977年日本“小西六”公司制造出世界第一台自动聚焦相机。 1988年日本生产出世界第一台能对移动物体进行自动聚焦的高级全自动单镜头反光相机——美能达7000I。 全世界公认摄影是法国L·达盖尔发明的。1839年8月19日法国向全世界宣布。L·达盖尔全名是路易·雅克·芒代·达盖尔。1787年出生—1851年去世。他是一位风景画家,专业画舞台背景,当时风景画、绘画时流行一种工具——暗箱。暗箱的作用:风景物透过镜头进入暗箱中的45O反光镜再反射到位于暗箱上方的磨砂玻璃上,再在磨砂玻璃上铺上画布作画。一次偶然的机会他发现昨天留在暗箱上的画布隐约有树影已留在画布上,就产生用什么方法把暗箱玻璃上的影像留在画布上,达盖尔获悉J·N尼埃普斯也在作这方面试验,而此时J·N尼埃普斯已年过六十,已觉得财力、精力、物力力不从心,才同意和L·达盖尔合作。1829年12月4日签订了十年合作协议,双方公布各自研究成果,以求互相帮助、取长补短,双方同意以双方的名义公布研究成果,并平分利益。 J·N尼普埃斯的住地夏隆(Chaion)与L·达盖尔签订协议,当即拿出了他的详细制作方法,并做了示范,L·达盖尔却没有拿出什么东西,所以,有人怀疑,在此前,L·达盖尔还没有试验出成果。协议签订后,双方各自进行试验再也没有见面。1833年J·N尼普埃斯逝世,由他的儿子I·尼普埃斯继承协议的合作关系,遗憾的是I·尼普埃斯不想做什么试验,所以只剩下L·达盖尔一人独自探索了。 1837年,L·达盖尔又经过了八年的探索,终于成功地拍摄出一幅自然光下的静物片。1839年8月19日世界摄影史第一页揭开了面纱——法国科学院和美术学会召开一个盛大的会议,会上宣布了这一重大发明——暗箱十 达盖尔摄影法(感光板)便拍摄成了正像的照片。 所以说世界上第一台相机及感光、冲洗、定影的方法是L·达盖尔发明的。
『贰』 有哪些伟大的发明的发明者不为人知
真的给你们吃的,用抄来收看视频信息,被你们接上游戏机来打游戏:万睿轩
来源,一开始道士是练不死仙丹来吃的,结果巧妙的打了他们一巴掌。被你用来下载游戏和打游戏。
溴化钾,为了防止自慰而发明的著作权归作者所有。
指南针。被你们用来辅助吃。
香槟酒, 是为了想要阻止酿酒过程中泡沫的产生, 通过药物来减轻分娩时的痛苦,被你们吸,原本是来计算导弹的发射轨迹的。被你们用来打游戏,也成为第一代射电天文学家)
杂交水稻,现在成为毒品。
射电天文学, 一开始负责搜索和鉴别电话干扰信号。现在成为了天文学(那群工程师。被你们叫镇定剂,现在猪和杂交水稻都被你们吃了。
火药。
手机,一开始是军方用来战场交流的。被你们用来打游戏。
电视机:知乎
『叁』 晶体管是如何发明的
首先要指出,晶体管的发明不是哪一位科学家拍脑袋想出来的,而是固体物理学理论指导实践的产物,是科学家长期探索的结果。
早在19世纪中叶,半导体的某些特性就受到科学家们的注意。法拉第观察到硫化银的电阻具有负的温度系数,与金属正好相反。史密斯用光照射在硒的表面,发现硒的电阻变小。1874年,布劳恩第一次在金属和硫化物的接触处观察到整流特性。1876年,亚当斯和戴依发现硒的表面会产生光生电动势。1879年,霍耳发现霍耳效应。对于金属,载流子是带负电的电子,这从金属中的电流方向、所加磁场的方向以及霍耳电势差的正负可以作出判断。可是,也有一些材料显示出正载流子而且其迁移率远大于正离子,这正是某些半导体的特性。可是,所有这些特性——电阻的负温度系数、光电导、整流、光生电动势以及正电荷载流子,都无法做出合理的解释。在19世纪物理学家面前,半导体的各种特性都是一些难解之谜。然而,在没有揭示其导电机理之前,半导体的某些应用却已经开始了,而且应用得还相当广泛。1883年,弗立兹制成了第一个实用的硒整流器。无线电报出现后,天然矿石被广泛用作检波器。1911年,梅里特制成了硅检波器,用于无线电检波。1926年左右,锗也用于制作半导体整流器件。这时,半导体整流器和光电池都已成为商品。人们迫切要求掌握这些器件的机理。然而,作为微观机制理论基础的量子力学,这时才刚刚诞生。
电子管问世之后,获得了广泛的应用。但是电子管体积大、耗电多、价格昂贵、寿命短、易破碎等缺点,促使人们设法寻找能代替它的新器件。早在1925年前后,已经有人在积极试探有没有可能做成像电子管一样,在电路中起放大作用和振荡作用的固体器件。
人们设想,如果在半导体整流器内“插入”栅极,岂不就能跟三极真空管一样,做成三极半导体管了吗?可是,如何在只有万分之几厘米的表面层内安放栅极呢?1938年,德国的希尔胥和R.W.玻尔在一片溴化钾晶体内成功地安放了一个栅极。可惜,他们的“晶体三极管”工作频率极低,只能对周期长达1秒以上的信号起作用。
在美国贝尔实验室工作的布拉坦(W.H.Brattain)和贝克尔(J.A.Becker)于1939年和1940年也曾多次试探实现固体三极管的可能性,都以失败告终。成功的希望在哪里呢?有远见的人们指望固体物理学给予理论指导。
正好在这期间,量子力学诞生了,A.H.威尔逊在1931年提出了固体导电的量子力学模型,用能带理论能够解释绝缘体、半导体和导体之间的导电性能的差别。接着,他在1932年,又在这一基础上提出杂质(及缺陷)能级的概念,这是认识掺杂半导体导电机理的重大突破。1939年,苏联的达维多夫、英国的莫特、德国的肖特基各自独立地提出了解释金属—半导体接触整流作用的理论。达维多夫首先认识到半导体中少数载流子的作用,而肖特基和莫特提出了著名的“扩散理论”。
至此,晶体管的理论基础已经准备就绪,关键在于如何把理论和实践结合在一起。1945年1月在美国贝尔实验室成立的固体物理研究组出色地做到了这一点。上面提到的布拉坦就是这个组的成员之一。他是实验专家,从1929年起就在贝尔实验室工作。另有一位叫肖克利(B.Shockley),是理论物理学家,1936年进入贝尔实验室。
1945年夏,贝尔实验室决定成立固体物理研究组,其宗旨就是要在固体物理理论的指导下,“寻找物理和化学方法,以控制构成固体的原子和电子的排列和行为,以产生新的有用的性质”。这个组共有7人,组长是肖克利,另外还有半导体专家皮尔逊(G.L.Pearson)、物理化学专家吉布尼(R.B.Gibney)、电子线路专家摩尔(H.R.Moore)。最关键的一位是巴丁(J.Bardeen),他也是理论物理学家,1945年刚来到贝尔实验室,是他提出的半导体表面态和表面能级的概念,把半导体理论又提高了一步,使半导体器件的试制工作得以走上正确的方向。
贝尔实验室的另外几位专家:欧尔和蒂尔等致力于硅和锗的提纯并研究成功生长大单晶锗的工艺,使固体物理研究组有可能利用新的半导体材料进行实验。肖克利根据莫特-肖特基的整流理论,并且在自己的实验结果之基础上,做出了重要的预言。他认为,假如半导体片的厚度与表面空间电荷层厚度相差不多,就有可能用垂直于表面的电场来调制薄膜的电阻率,从而使平行于表面的电流也受到调制。这就是所谓的“场效应”,是以后的场效应管的理论基础。
可是,当人们按照肖克利的理论设想进行实验时,却得不到明显的效果。后来才认识到,除了材料的备制还有缺陷之外,肖克利的场效应理论也还不够成熟。表面态的引入,使固体物理研究组的工作登上了一个新的台阶。他们测量了一系列杂质浓度不同的p型和n型硅的表面接触电势,发现经过不同表面处理或在不同的气氛中,接触电势也不同,还发现当光照射硅的表面时,其接触电势会发生变化。接着,他们准备进一步测量锗、硅的接触电势跟温度的关系。就在为了避免水汽凝结在半导体表面造成的影响,他们把样品和参考电极浸在液体(例如可导电的水)中时意外的情况出现了。他们发现,光生电动势大大增加,改变电压的大小和极性,光生电动势也随之改变大小和符号。经过讨论,他们认识到,这正是肖克利预言的“场效应”。
巴丁提出了一个新方案。他们用薄薄的一层石蜡封住金属针尖,再把针尖压进已经处理成n型和p型硅的表面,在针尖周围加一滴水,水与硅表面接触。带有蜡层的针同水是绝缘的。正如他们所预期的那样,加在水和硅之间的电压,会改变从硅流向针尖的电流。这一实验使他们第一次实现了功率放大。后来,他们改用n型锗做实验,效果更好。然而,这样的装置没有实用价值,因为水滴会很快蒸发掉。由于电解液的动作太慢,这种装置只能在8赫以下的频率才能有效地工作。
他们发现,在电解液下面的锗表面会形成氧化膜,如果在氧化膜上蒸镀一个金点作为电极,有可能达到同样的目的,然而,这一方案实现起来也有困难。
最后,他们决定在锗表面安置两个靠得非常近的触点,近到大约5×10-3厘米的样子,而最细的导线直径都有10×10-3厘米。实验能手布拉坦想出一条妙计。他剪了一片三角形塑料片,并在其狭窄而平坦的侧面上牢固地粘上金箔,然后用刀片从三角形塑料片的顶端把金箔割成两半。再用弹簧加压的办法,把塑料片和金箔一起压在锗片上。于是,他做成了世界上第一只能用于音频的固体放大器。他们命名为晶体管(transistor)。这一天是1947年12月23日。接触型晶体管诞生了。
接着,肖克利又想出了一个方案。他把n型半导体夹在两层p型半导体之间。1950年4月他们根据这一方案做成了结型晶体管。
亲爱的朋友们,以上讲了晶体管的发明经过,从这段史实中,你能否指出,是谁发明了晶体管?谁又是最主要的发明者?是巴丁?是肖克利?还是布拉坦?应该说,他们都是。功劳应归于他们这个集体,他们所在的固体物理学小组。晶体管是他们的集体创造。我们不必纠缠于争论谁的功劳大,但至少可以由此得到一条信念:科学是人类集体的事业,是人们以各种方式,包括有形的和无形的,进行协作的产物。
『肆』 历史上有哪些背离发明者初衷的发明
历史上其实有非常多的背离发明者初衷的发明,其中有几样尤为特殊非常受人关注,在这里列举其中的两样作为代表介绍给大家。
除此之外还要提一下高跟鞋,在古欧洲的时候,高跟鞋的发明可是为男人准备的,因为在古代的欧洲,所有的男人都必须学会骑马,而身材矮小的男人骑马的时候,脚会碰不到马鞍,所以就发明了高跟鞋,这样不但可以显得自己非常高,增加不少的男子气概,还可以让自己起码的时候更加方便,实在是一举两得的发明。
『伍』 转基因食物有毒吗
可以非常明确地告诉你,转基因食品无毒。
不是没有定论,而是非常明确版的无毒。
我国2013年进权口的转基因大豆就达到5838万吨,以13亿中国人算,人均49公斤,2014年进口量更是高达6380万吨。这些转基因大豆,主要是生产大豆油,剩下的豆粨作高蛋白饲料。
试问哪一家大型饲养场不使用转基因豆粨的?但有谁见过哪一家用转基因大豆饲养的猪、兔、鸡、鸭、奶牛等等不育的,得肿瘤的?
至少你们该知道,用这些转基因豆粨作饲料喂养动物的历史已经是几十代了,还偏偏有人硬说转基因大豆会造成不育。
不信,你们自己找一家饲养场看一看,看一看转基因豆粨做饲料的情况。有谁见过大型饲养场用转基因豆粨饲养动物出现显著增高的肿瘤患病率?
有谁能说这些不能算动物长期喂养实验?
不仅个体时间长,并且是连续很多代。这些数百万数千万的动物饲养结果,会比仅仅用几只的老鼠饲养实验更差?
有人天天都吃转基因食品(大饭店中不可能不用转基因大豆油或调和油的,官员在这种大饭店中的消费整体上远远超过普通老百姓,或者是卖有机食品发了财的土豪),但对转基因食品咬牙切齿,硬说其有毒,无非就是想炒作有机食品骗钱而已。
『陆』 半导体是达伽码发明的还是牛顿发明的
半导体的发明
早在1930与1940年代,使用半导体制作固态放大器的想法就持续不绝;第一个有实验结果的放大器是1938年,由波欧(Robert Pohl, 1884~1976)与赫希(Rudolf Hilsch)所做的,使用的是溴化钾晶体与钨丝做成的闸极,尽管其操作频率只有一赫兹,并无实际用途,却证明了类似真空管的固态三端子组件的实用性。
二次大战后,美国的贝尔实验室(Bell Lab),决定要进行一个半导体方面的计画,目标自然是想做出固态放大器,它们在1945年7月,成立了固态物理的研究部门,经理正是萧克莱(William Shockley, 1910~1989)与摩根(Stanley Morgan)。由于使用场效应(field effect)来改变电导的许多实验都失败了,巴丁(John Bardeen,1908~1991)推定是因为半导体具有表面态(surface state)的关系,为了避开表面态的问题,1947年11月17日,巴丁与布莱登(Walter Brattain 1902~1987)在硅表面滴上水滴,用涂了蜡的钨丝与硅接触,再加上一伏特的电压,发现流经接点的电流增加了!但若想得到足够的功率放大,相邻两接触点的距离要接近到千分之二英吋以下。12月16日,布莱登用一块三角形塑料,在塑料角上贴上金箔,然后用刀片切开一条细缝,形成了两个距离很近的电极,其中,加正电压的称为射极 (emitter),负电压的称为集极 (collector),塑料下方接触的锗晶体就是基极 (base),构成第一个点接触电晶体 (point contact transistor),1947年12月23日,他们更进一步使用点接触电晶体制作出一个语音放大器,该日因而成为晶体管正式发明的重大日子。
另一方面,就在点接触电晶体发明整整一个月后,萧克莱想到使用p-n接面来制作接面晶体管 (junction transistor) 的方法,在萧克莱的构想中,使用半导体两边的n型层来取代点接触电晶体的金属针,藉由调节中间p型层的电压,就能调控电子或电洞的流动,这是一种进步很多的晶体管,也称为双极型晶体管 (bipolar transistor),但以当时的技术,还无法实际制作出来。
晶体管的确是由于科学发明而创造出来的一个新组件,但是工业界在1950年代为了生产晶体管,却碰到许多困难。1951年,西方电器公司(Western Electric)开始生产商用的锗接点晶体管,1952年4月,西方电器、雷神(Raytheon)、美国无线电(RCA) 与奇异(GE)等公司,则生产出商用的双极型晶体管。但直到1954年5月,第一颗以硅做成的晶体管才由美国德州仪器公司(Texas Instruments)开发成功;约在同时,利用气体扩散来把杂质掺入半导体的技术也由贝尔实验室与奇异公司研发出来;在1957年底,各界已制造出六百种以上不同形式的晶体管,使用于包括无线电、收音机、电子计算器甚至助听器等等电子产品。
早期制造出来的晶体管均属于高台式的结构。1958年,快捷半导体公司 (Fairchild Semiconctor)发展出平面工艺技术(planar technology),借着氧化、黄光微影、蚀刻、金属蒸镀等技巧,可以很容易地在硅芯片的同一面制作半导体组件。1960年,磊晶(epitaxy)技术也由贝尔实验室发展出来了。至此,半导体工业获得了可以批次(batch)生产的能力,终于站稳脚步,开始快速成长。
『柒』 半导体是_____发明的
1947年,美国电报电话公司(AT&T)贝尔实验室的三位科学家巴丁、布莱顿和肖克利在研究半导体材料--锗和硅的物理性质时,意外地发现了锗晶体具有放大作,经过反复研究,他们用半导体材料制成了放大倍数达100量级的放大器,这便是世界上第一个固体放大器--晶体三极管。
晶体管的出现,迅速替代电子管占领了世界电子领域。随后,晶体管电路不断向微型化方向发展。1957年,美国科学家达默提出"将电子设备制作在一个没有引线的固体半导体板块中"的大胆技术思想,这就是半导体集成电路的思想。1958年,美国德克萨斯州仪器公司的工程师基尔比在一块半导体硅晶片上电阻、电容等分立元件放入其中,制成第一批集成电路。1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,"点石成金",集成电路很快成了比黄金还诱人的产品 1971年 11月,英特尔(Intel)公司的霍夫将计算机的线路加以改进,把中央处理器的全部功能集成在一块芯片上,另外再加上存储器,制成世界上第一个微处理器。
随着硅片上元件集成度的增加,集成电路的发展经历了小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路(VLSI)阶段。1978年,研制成的超大规模集成电路,集成度达10万以上,电子技术进入微电子时代。80年代末,芯片上集成的元件数突破1000万的大关。
『捌』 半导体历史发展有哪些
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
(8)溴化钾发明扩展阅读:
人物贡献:
1、英国科学家法拉第(MIChael Faraday,1791~1867)
在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料。
硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;
然而,今天我们已经知道,随着温度的提升,晶格震动越厉害,使得电阻增加,但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。
2、德国的布劳恩(Ferdinand Braun,1850~1918)。
注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。
但直到1906年,美国电机发明家匹卡(G. W. PICkard,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。
在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。
3、布洛赫(Felix BLOCh,1905~1983)
在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。
另一方面,德国人佩尔斯(Rudolf Peierls, 1907~ ) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;
他后来提出的微扰理论,解释了能隙(Energy gap)存在。
『玖』 历史上有哪些发明到后来脱离了发明者的初衷
著作权抄归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:万睿轩
来源:知乎
计算机,原本是来计算导弹的发射轨迹的。被你们用来打游戏。
手机,一开始是军方用来战场交流的。被你们用来打游戏。
电视机,用来收看视频信息,被你们接上游戏机来打游戏。
网络,一开始为了军方各单位信息交流。被你用来下载游戏和打游戏。
溴化钾,为了防止自慰而发明的。被你们叫镇定剂。
全麦饼干,为了抑制性需求而发明。被你们用来吃,
微波,二战中为追踪纳粹战斗机而发明的。被你们用来辅助吃。
香槟酒, 是为了想要阻止酿酒过程中泡沫的产生,被你们用来专门喷泡沫(不敢想象发明者,看到你们摇一摇开香槟的表情)
LSD幻觉剂, 通过药物来减轻分娩时的痛苦,被你们吸,现在成为毒品。
射电天文学, 一开始负责搜索和鉴别电话干扰信号。现在成为了天文学(那群工程师,也成为第一代射电天文学家)
杂交水稻,一开始是为了喂猪的,现在猪和杂交水稻都被你们吃了。
火药,一开始道士是练不死仙丹来吃的,结果巧妙的打了他们一巴掌。
指南针,导航使用。被你们用来看风水。
转基因食品。真的给你们吃的。被你们说有毒。