三角形发明
『壹』 请问三角函数里sin cos tan cot 都是谁发明的,为什么而发明
sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的领导人物,他于1464年完成的版著作权《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。 cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现。 secant(正割)及tangent(正切)为丹麦数学家托马斯·芬克首创,最早见于他的《圆几何学》一书中。cosecant(余割)一词为锐梯卡斯所创。最早见于他1596年出版的《宫廷乐章》一书。 1626年,阿贝尔特·格洛德最早推出简写的三角符号:“sin”、“tan”、“sec”。1675年,英国人奥屈特最早推出余下的简写三角符号:“cos”、“cot”、“csc”。但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来。
『贰』 人们根据三角形发明了什么车
三轮车 求采纳
『叁』 三角函数的发明者是谁
没有所谓的发明者?)给出三角函数的定义.pitiscus。其实三角函数是世世代代数学专家们属的辛勤劳动的结晶,1561-1613)第一个使用三角学这个词的数学家,但非三角函数的创立者,雷蒂弗斯(1514-1576)(哥白尼的好友)使用三角形定义三角函数。艾布瓦法(940-997皮蒂斯楚斯(b
『肆』 三角形的发展历史
◇公元前600年以前 ◇ 据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。 公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。 公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。 中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。 公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。 ◇公元前600--1年◇ 公元前六世纪,发展了初等几何学(古希腊 泰勒斯)。 约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。 公元前六世纪,印度人求出√2=1.4142156。 公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等).。 公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。 公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。 公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。 公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。 公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。 公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。 公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。 公元前三世纪,筹算是当时中国的主要计算方法。 公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊 阿波罗尼)。 约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。 公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。 ◇1-400年◇ 继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。 一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。 一世纪左右,写了关于几何学、计算的和力学科目的网络全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。 100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。 150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。 三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。 三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国,赵爽)。 三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。 三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国 刘徽)。 四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。 ◇401-1000年◇ 五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国 祖冲之)。 五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。 六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。 六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。 七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax+by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。 七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。 七世纪,唐代有《"十部算经"注释》。"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。 九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。 ◇1001-1500年◇ 1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。 十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯,阿尔·卡尔希)。 十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。 十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等 角(埃及,阿尔·海赛姆)。 十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。后人所称的"杨辉三角"即指此法(中国,贾宪)。 十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。 1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。 1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。 1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。 1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。 1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国, 杨辉)。 1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。 1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。 1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。 1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。 ◇1501-1600年◇ 1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利 ,卡尔达诺、非尔洛)。 1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。 1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。 1596─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国,奥脱、皮提斯库斯)。 ◇1601-1650年◇ 1614年,制定了对数(英国,耐普尔)。 1615年,发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积(德国,刻卜勒 )。 1635年,发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分(意大利,卡瓦列利)。 1637年,出版《几何学》,制定了解析几何。把变量引进数学,成为"数学中的转折点","有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了"(法国,笛卡尔)。 1638年,开始用微分法求极大、极小问题(法国,费尔玛)。 1638年,发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就(意大利,伽里略)。 1639年,发行《企图研究圆锥和平面的相交所发生的事的草案》,是近世射影几何学的早期工作(法国,德沙格)。 1641年,发现关于圆锥内接六边形的"巴斯噶定理"(法国,巴斯噶)。 1649年,制成巴斯噶计算器,它是近代计算机的先驱(法国,巴斯噶)。 .◇1651-1700年◇ 1654年,研究了概率论的基础(法国,巴斯噶、费尔玛)。 1655年,出版《无穷算术》一书,第一次把代数学扩展到分析学(英国,瓦里斯)。 1657年,发表关于概率论的早期论文《论机会游戏的演算》(荷兰,惠更斯)。 1658年,出版《摆线通论》,对"摆线"进行了充分的研究(法国,巴斯噶)。 1665─1676年,牛顿(1665─1666年)先于莱布尼茨(1673─1676年)制定了微积分,莱布尼茨(1684─1686年)早于牛顿(1704─1736年)发表微积分(英国,牛顿,德国,莱布尼茨 )。 1669年,发明解非线性方程的牛顿-雷夫逊方法(英国,牛顿、雷夫逊)。 1670年,提出"费尔玛大定理",预测:若X,Y,Z,n都是整数,则Xn+Yn=Zn ,当 n>2时是不可能的(法国,费尔玛)。 1673年,发表《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线(荷兰,惠更斯)。 1684年,发表关于微分法的著作《关于极大极小以及切线的新方法》(德国,莱布尼茨)。 1686年,发表了关于积分法的著作(德国,莱布尼茨)。 1691年,出版《微分学初步》,促进了微积分在物理学和力学上的应用及研究(瑞士,约·贝努利)。 1696年,发明求不定式极限的"洛比达法则"(法国,洛比达)。 1697年,解决了一些变分问题,发现最速下降线和测地线(瑞士,约·贝努利)。 ◇1701-1750年◇ 1704年,发表《三次曲线枚举》、《利用无穷级数求曲线的面积和长度》、《流数法》(英国,牛顿)。 1711年,发表《使用级数、流数等等的分析》(英国,牛顿)。 1713年,出版概率论的第一本著作《猜度术》(瑞士,雅·贝努利)。 1715年,发表《增量方法及其他》(英国,布·泰勒)。 1731年,出版《关于双重曲率的曲线的研究》是研究空间解析几何和微分几何的最初尝试(法国,克雷洛)。 1733年,发现正态概率曲线(英国,德·穆阿佛尔)。 1734年,贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机(英国,贝克莱)。 1736年,发表《流数法和无穷级数》(英国,牛顿)。 1736年,出版《力学、或解析地叙述运动的理论》,是用分析方法发展牛顿的质点动力学的第一本著作(瑞士,欧勒)。 1742年,引进了函数的幂级数展开法(英国,马克劳林)。 1744年,导出了变分法的欧勒方程,发现某些极小曲面(瑞士,欧勒)。 1747年,由弦振动的研究而开创偏微分方程论(法国,达兰贝尔等)。 1748年,出版了系统研究分析数学的《无穷分析概要》,是欧勒的主要著作之一(瑞士, 欧勒)。 ◇1751-1800年◇ 1755─1774年出版《微分学》和《积分学》三卷。书中包括分方程论和一些特殊的函数(瑞士,欧勒)。 1760─1761年,系统地研究了变分法及其在力学上的应用(法国,拉格朗日)。 1767年,发现分离代数方程实根的方法和求其近似值的方法(法国,拉格朗日)。 1770─1771年,把置换群用于代数方程式求解,这是群论的开始(法国,拉格朗日)。 1772年,给出三体问题最初的特解(法国,拉格朗日)。 1788年,出版《解析力学》,把新发展的解析法应用于质点、刚体力学(法国,拉格朗日)。 1794年,流传很广的初等几何学课本《几何学概要》(法国,勒让德尔)。 1794年,从测量误差,提出最小二乘法,于1809年发表(德国,高斯)。 1797年,发表《解析函数论》不用极限的概念而用代数方法建立微分学(法国, 拉格朗日)。 1799年,创立画法几何学,在工程技术中应用颇多(法国,蒙日)。 1799年,证明了代数学的一个基本定理:实系数代数方程必有根(德国,高斯)。 ◇1801-1850年◇ 1801年, 出版《算术研究》,开创近代数论(德国,高斯)。 1809年,出版了微分几何学的第一本书《分析在几何学上的应用》(法国,蒙日)。 1812年,《分析概率论》一书出版,是近代概率论的先驱(法国,拉普拉斯)。 1816年,发现非欧几何,但未发表(德国,高斯)。 1821年,《分析教程》出版,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等(法国,柯西)。 1822年,系统研究几何图形在投影变换下的不变性质,建立了射影几何学(法国,彭色列)。 1822年,研究热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响(法国,傅立叶)。 1824年,证明用根式求解五次方程的不可能性(挪威,阿贝尔)。 1825年,发明关于复变函数的柯西积分定理,并用来求物理数学上常用的一些定积分值(法国,柯西)。 1826年,发现连续函数级数之和并非连续函数(挪威,阿贝尔)。 1826年,改变欧几理得几何学中的平行公理,提出非欧几何学的理论(俄国,罗巴切夫斯基,匈牙利,波约)。 1827-1829年,确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用(德国,雅可比,挪威,阿贝尔,法国,勒让德尔)。 1827年,建立微分几何中关于曲面的系统理论(德国,高斯)。 1827年,出版《重心演算》,第一次引进齐次坐标(德国,梅比武斯)。 1830年,给出一个连续而没有导数的所谓"病态"函数的例子(捷克,波尔查诺)。 1830年,在代数方程可否用根式求解的研究中建立群论(法国,伽罗华)。 1831年,发现解析函数的幂级数收敛定理(法国,柯西)。 1831年,建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性(德国,高斯)。 1835年,提出确定代数方程式实根位置的方法(法国,斯特姆)。 1836年,证明解析系数微分方程式解的存在性(法国,柯西)。 1836年,证明具有已知周长的一切封闭曲线中包围最大面积的图形必定是圆(瑞士,史坦纳)。 1837年,第一次给出了三角级数的一个收敛性定理(德国,狄利克莱)。 1840年,把解析函数用于数论,并且引入了"狄利克莱"级数(德国,狄利克莱)。 1841年,建立了行列式的系统理论(德国,雅可比)。 1844年,研究多个变元的代数系统,首次提出多维空间的概念(德国,格拉斯曼)。 1846年,提出求实对称矩阵特征值问题的雅可比方法(德国,雅可比)。 1847年,创立了布尔代数,对后来的电子计算机设计有重要应用(英国,布尔)。 1848年,研究各种数域中的因子分解问题,引进了理想数(德国,库莫尔)。 1848年,发现函数极限的一个重要概念--一致收敛,但未能严格表述(英国,斯托克斯)。 1850年,给出了"黎曼积分"的定义,提出函数可积的概念(德国,黎曼)。 ◇1851-1900年◇ 1851年,提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明(德国,黎曼)。 1854年,建立更广泛的一类非欧几何学--黎曼几何学,并提出多维拓扑流形的概念(德国,黎曼)。开始建立函数逼近论,利用初等函数来逼近复杂的函数。 二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展(俄国,契比雪夫)。 1856年,建立极限理论中的ε-δ方法,确立了一致收敛性的概念(德国,外尔斯特拉斯)。 1857年,详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数(德国,黎曼)。 1868年,在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素(德国,普吕克)。 1870年,发现李群,并用以讨论微分方程的求积问题(挪威,李)。 给出了群论的公理结构,是后来研究抽象群的出发点(德国,克朗尼格)。 1872年,数学分析的"算术化",即以有理数的集合来定义实数(德国,戴特金、康托尔、外耳斯特拉斯)。 发表了"爱尔朗根计划",把每一种几何学都看成是一种特殊变换群的不变量论(德国,克莱茵)。 1873年,证明了π是超越数(法国,埃尔米特)。 1876年,《解析函数论》发行,把复变函数论建立在幂级数的基础上(德国,外尔斯特拉斯)。 1881-1884年,制定了向量分析(美国,吉布斯)。 1881-1886年,连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论(法国,彭加勒)。 1882年,制定运算微积,是求解某些微分方程的一种简便方法,工程上常有应用(英国,亥维赛)。 1883年,建立集合论,发展了超穷基数的理论(德国,康托尔)。 1884年,《数论的基础》出版,是数理逻辑中量词理论的发端(德国 弗莱格)。 1887-1896年,出版了四卷《曲面的一般理论的讲义》,总结了一个世纪来关于曲线和曲面的微分几何学的成就(德德国,达尔布)。 方法。后在电子计算机上获得应用。 1901年,严格证明狄利克雷原理,开创变分学的直接方法,在工程技术的计算问题中有很多应用(德国,希尔伯特)。 1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国,寇贝)。 反对在数学中使用排中律,提出直观主义数学(美籍荷兰人,路.布劳威尔)。 1908年,点集拓扑学形成(德国,忻弗里斯)。 提出集合论的公理化系统(德国,策麦罗)。 1909年,解决数论中著名的华林问题(德国,希尔伯特)。 1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国,施坦尼茨)。 发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人,路.布劳威尔)。 1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表著作(英国,贝.素、怀特海)。1913年 法国的厄·加当和德国的韦耳完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。这在量子力学和基本粒子理论中有重要应用。 德国的韦耳研究黎曼面,初步产生了复流形的概念。 1914年 德国的豪斯道夫提出拓扑空间的公理系统,为一般拓扑学建立了基础。 1915年 瑞士美籍德国人爱因斯坦和德国的卡·施瓦茨西德把黎曼几何用于广义相对论,解出球对称的场方程,从而可以计算水星近日点的移动等问题。 1918年 英国的哈台、立笃武特应用复变函数论方法来研究数论,建立解析数论。 丹麦的爱尔兰为改进自动电话交换台的设计,提出排队论的数学理论。 希尔伯特空间理论的形成(匈牙利 里斯)。 1919年 德国的亨赛尔建立P-adic数论,这在代数数论和代数几何中有重要用。 1922年 德国的希尔伯特提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论。 1923年 法国的厄·加当提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端。 法国的阿达玛提出偏微分方程适定性,解决二阶双曲型方程的柯西问题()。 波兰的巴拿哈提出更广泛的一类函数空间——巴拿哈空间的理论()。 美国的诺·维纳提出无限维空间的一种测度——维纳测度,这对概率论和泛函分析有一定作用。 1925年 丹麦的哈·波尔创立概周期函数。 英国的费希尔以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法。 1926年 德国的纳脱大体上完成对近世代数有重大影响的理想理论。 1927年 美国的毕尔霍夫建立动力系统的系统理论,这是微分方程定性理论的一个重要方面。 1928年 美籍德国人 理·柯朗提出解偏微分方程的差分方法。 美国的哈特莱首次提出通信中的信息量概念。 德国的格罗许、芬兰的阿尔福斯、苏联的拉甫连捷夫提出拟似共形映照理论,这在工程技术上有一定应用。
『伍』 三角函数的发明者是谁
皮蒂斯楚斯来(B.Pitiscus,1561-1613)第一个使用三角学源这个词的数学家,但非三角函数的创立者。艾布瓦法(940-997?)给出三角函数的定义,雷蒂弗斯(1514-1576)(哥白尼的好友)使用三角形定义三角函数。其实三角函数是世世代代数学家们的辛勤劳动的结晶,没有所谓的发明者。
『陆』 三角函数谁发明的
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一) 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. 自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二) 早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. 当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. 18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三) 函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. 后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 表示出,其中 富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. 通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. 1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. 1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” 根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1 (x为有理数), 0 (x为无理数). 在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. 狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四) 生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 P(0)=压力/接触面=1/0=∞. 其余点x≠0处,因无压力,故无压强,即 P(x)=0.另外,我们知道压强函数的积分等于压力,即 函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. 函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. 函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. 设集合X、Y,我们定义X与Y的积集X×Y为 X×Y={(x,y)|x∈X,y∈Y}. 积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. 现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
『柒』 请问三角形正方形长方形是哪位数学家发明的
不能说发明,应该说发现和证明。欧几里德
『捌』 人们根据三角形的特征发明了什么车
不会是三轮车吧?
『玖』 是谁发现的三角形
巴斯卡三角形是一个包含了发生在代数、几何、和自然界中数字模式之有名的算术三版角形。它虽权然冠以法国数学家,巴斯卡之名。然而,这个冠以巴斯卡之名的三角形,早在巴斯卡出生之前500多年就被发现了。 在公元1303年,中国数学家朱世杰在他的一本叫做「四元玉鉴」一书的序中发表了这个有名的三角形。朱世杰甚至没有宣扬发现了这个三角形的荣耀。
『拾』 哪一个国家发明了相似三角形
公元前6世纪,在今天土耳其西部爱奥尼亚地域(当时属于古希腊版图),一批学者开始以全新的观念看待置身其中的世界。他们认为,整个宇宙是自然的,自然界的一切变化都有内在原因,自然现象可以通过理性探讨解释。他们第一次把神排除在宇宙之外。
首先提出这种看法的是古希腊第一位自然哲学家泰勒斯(公元前625~公元前547年)。泰勒斯居住在米利都。米利都是古希腊当时最美、最大的城市,门德雷斯河从这里流入爱琴海。它是从海上进入西亚与北非的交通要冲,是繁华的商贸中心。多种知识和思想在这里交汇,它成为爱琴海域当时最开放的地方。
泰勒斯早年到埃及游历,学习了古埃及和巴比伦的天文学、几何学知识,后来把这些知识引进希腊。他十分关注世间万物的本原问题,认为纷繁复杂的世界有一个统一的本原,与神毫不相干。
在埃及的时候,泰勒斯用一种极简单的办法测量出胡夫金字塔的高度,令当地人惊讶不已。
在阳光下,他先量出金字塔投在地上影子的长度,再竖起一根木棍,量出棍子的影长。塔影的长度除以木棍影子的长度,再乘以木棍的长度,就得出金字塔的高度为146米。
泰勒斯的智慧在于,他注意到太阳投射到地面的光线是平行的,巧妙地运用了相似三角形的边长比例关系。