A. e^(iπ)+1=0这个公式的发明者是谁
欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。
欧拉公式
公式描述:公式中e是自然对数的底,i是虚数单位。
e^(ix)=cosx+isinx
e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:
e^(-ix)=cosx-isinx,然后采用两式相加减的方法得到:
sinx=[e^(ix)-e^(-ix)]/(2i),cosx=[e^(ix)+e^(-ix)]/2.
这两个也叫做欧拉公式。
上帝创造的公式
将e^(ix)=cosx+isinx中的x取作π就得到:
e^(iπ)+1=0.
这个等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
B. π是谁发明出来的
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比值。它
相关教学电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。
而如今计算机高速发展,人们虽然已经知道π是一个无理数,而且已经计算得越来越精准,而人们不管是工程测量、数学解题过程中,大部分都取前两位数,就是π≈3.14,也产生了圆周率日(3月14日)。
折叠编辑本段各国发展
在历史上,有不少数学家都对圆周率做出过研究,当中著名的有阿基米德(Archimedes ofSyracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
折叠亚洲
中国,最初在《周髀算经》中就有“径一周三”的记载,取π值为3。
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。
印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
折叠欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
(阿基米德,前287-212,古希腊数学家,从单位圆出发,先用内接六边形求出圆周率的下界是3,再用外接六边形结合勾股定理求出圆周率的上限为4,接着对内接和外界正多边形的边数加倍,分别变成了12边型,直到内接和外接96边型为止。最后他求出上界和下界分别为22╱7和223╱71,并取他们的平均值3.141851为近似值,用到了迭代算法和两数逼近的概念,称得算是计算的鼻祖。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
折叠
C. 兀是谁发明的
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及回物理学中普遍存在的数学常答数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
若有帮助 望采纳谢谢
D. 数学中兀的发明者是谁
中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π回的近似值答,也得出精确到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
E. 数学中π是谁发明的
巴比伦人定出π大概等于31/8(3.125),埃及人测量结果稍为逊色,是大概3.16。
在公元前三世纪,希腊数学家阿基米德可可以是首个用科学方法计算π人,算出大概等于3.14。
拓展资料:
祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
F. π是谁提出的(不是谁发明的),谢谢
巴比复伦人定出π大概等制于31/8(3.125),埃及人测量结果稍为逊色,是大概3.16。在公元前三世纪,希腊数学家阿基米德可可以是首个用科学方法计算π人,算出大概等于3.14。到了公元200年,有人算出π等于3.1416,这个数值在公元6世纪初分别得到中国(china,p.r.c.)跟印度数学家证(Paper)实。今日,得到强大电脑(Personal computer/PC)之助,π数值已经算到小数点后数十亿数位了。但是即使π实实在在非常有用,在科学运算应用范围中,须要用上近二十个小数位“π”例子实在寥寥可数。
祖冲之只是第一个把π推到小数点后7位的人,而在他之前也有好多人算过 只不过没他精确.
圆周率的提出主要是为了解决圆的周长计算问题的。
G. 问一下为什么要发明π
π,就是圆周率,是圆的周长与直径的比值。是一个固定比值。
这东西表示圆的一个规律,开始有圆的时候就就有这个,只是发现比较晚而已,也不存在什么发明的问题、
H. π是谁发明出来的
秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
刘徽(约公元225年-295年),汉族,山东滨州邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.
I. 数学中兀的发明者是谁
兀是否来是派?
若是,则自由中国数学家,天文学家祖冲之,世界第一位将圆周率值计算到小数第7位的科学家,
其圆周率即派=3.1415927……
但圆周率不是由祖冲之发明的,请看下面网址中的历史发展:
http://ke..com/view/3287.htm?fr=aladdin
J. π是谁发明的
祖冲之发明的;祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一。
直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。
祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

拓展资料
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。