当前位置:首页 » 著名认证 » 数学著名定理

数学著名定理

发布时间: 2021-01-27 18:18:45

1. 中国数学中的著名定理和公式有哪些

祖暅定理、"贾宪三角"和增乘开方法、秦九韶 的“大衍总数术”(一次同余回组解法)与“正负开方答术"(高次方程数值解法、李冶开元术列方程的方法、朱世杰的“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)、杨辉三角、沈括"隙积术”。希望能给你帮助,

2. 初中至高中有哪些著名的数学定理

买那本华东师范大学出版社的《高中数学竞赛多功能题典》,后面有重要的竞赛的定理,概念 。1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。

2.代数
周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*

3. 初等数论
同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。

3. 中国古代著名数学定理

中国古代最著名的数学定理,我觉得就是勾股定理了吧。其实也就是现在所说的毕达哥拉斯定理。

4. 中国数学有那些著名的公式和定理

算筹是中国古代的计算工具,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。
《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。
九章算术》标志以筹算为基础的中国古代数学体系的正式形成。
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。
赵爽学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。
祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。

隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。
明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。

由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。

5. 初中数学著名的定理

斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2。波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD。阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆上。托勒密定理:设四边形ABCD 接于圆,则有AB×CD+AD×BC=AC×BD。以任意三角形ABC的边BC、CA、AB为底边,分别向外作角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形。爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1。梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线。塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1。塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点。塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)。波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏)。

6. 著名数学定理

阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡·奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理

7. 著名的高中数学定理有哪些

买那本华东师范大学出版社的《高中数学竞赛多功能题典》,后面有重要的竞赛的定理,概念 。1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。

2.代数
周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*

3. 初等数论
同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。参考资料:http://www.jxllt.com/?artid=MzIxMzQ=&F=dmlldy5odG0= 望采纳谢谢

8. 数学最著名的定律

牛顿插项定理 哥德巴赫猜想

9. 在数学界最有名的定理是什么

阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡·奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理

10. 数学十大定理

1。人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~

1不等式定律:
3两+1两>2两+2两>4两

2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。

3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。

4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)

5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。

6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)

7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。

8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。

9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。

10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837