著名星球
① 星球名称大全
赫尔卡星、海洋星、克洛斯星、火山星、云霄星、双子阿尔法星、双子贝塔星、塞西利亚星、拜伦号、露西欧星、斯诺星、卡酷星、格朗德星
尼古尔星、塔克星、艾迪星、斯科尔星、普雷空间站、哈莫星、推特星、诺可撒斯星、米斯特瑞星、索伦森星、普罗特星、天蛇星
比格星、陨石地带、空间补给站、拓梯星、戴斯星、墨杜萨星、海兹尔星、拉铂尔星、菲尔纳星、般若星
怀特星、麦兹星、格雷斯星、SUN星、果然星、未来星、Y星、异能星、希尔星、泰若星、提尔瑞斯星、神火星
巨石星、艾伦星、巴斯星、莱恩纳斯、幻影星、恶魔星、魔神星、南瓜星、天马星、帕索尔星
创世星、永恒星、棱石星、暗婆罗星、迷幻星云、天魔星、魔灵星
编辑于 2019-12-23
查看全部16个回答
8条评论
帝释天7908
你这听着咋那么熟悉呢!赛尔号?
查看全部8条评论
— 你看完啦,以下内容更有趣 —
宇宙中星球的名称
太阳 月亮 木星 金星 火星 水星 土星 天王星 海王星 冥王星 地球 比邻星 哈勃彗星 天狼星 牛郎星 织女星 谷神星 太阳系外的天体都是有名字的,如果讲比较亮恒星,就是星座名字加希腊字母。 比如“小熊座α星”,就是北极星。所有星座的星星根据亮度,按照希腊字母顺序排序命名,很多都是编号的,没有名字 梅西耶星云星团表 [编辑本段] 编号 NGC 赤经 赤纬 视径 光度 距离 星座 注释 (名称) 2000 2000 (星等) M1 NGC1952 5h 34.5m +22 01' 36x34' 8.4 金牛座 蟹状星云 M2 NGC7089 21h 33.5m - 0 49' 13 6.5 宝瓶座 球状星团 M3 NGC5272 13h 42.5m +28 23' 16 6.4 猎犬座 球状星团 M4 NGC6121 16h 23.6m -26 32' 26 5.9 天蝎座 球状星团 M5 NGC5904 15h 18.6m + 2 05' 17 5.8 巨蛇座 球状星团 M6 NGC6405 17h 40.1m -32 13' 15 4.2 天蝎座 疏散星团 M7 NGC6475 17h 53.9m -34 49' 80 3.3 天蝎座 疏散星团 M8 NGC6523 18h 03.8m -24 23' 90x40 5.8 人马座 弥漫星云 M9 NGC6333 17h 19.2m -18 31' 9 7.9 蛇夫座 球状星团 M10 NGC6254 16h 57.1m -4 06' 15 6.6 蛇夫座 球状星团 M11 NGC6705 18h 51.1m -6 16' 14 5.8 盾牌座 疏散星团 M12 NGC6218 16h 47.2m -1 57' 15 6.6 蛇夫座 球状星团 M13 NGC6205 16h 41.7m +36 28' 17 5.9 武仙座 球状星团 M14 NGC6402 17h 37.6m -3 15' 12 7.6 蛇夫座 球状星团 M15 NGC7078 21h 30.0m +12 10' 12 5.4 飞马座 球状星团 M16 NGC6611 18h 18.8m -13 47' 35 6.0 巨蛇座 弥漫星云 M17 NGC6618 18h 20.8m -16 11' 46x37 7.0 人马座 弥漫星云 M18 NGC6613 18h 19.9m -17 08' 9 6.9 人马座 疏散星团 M19 NGC6273 17h 02.6m -26 16' 14 7.2 蛇夫座 球状星团 M20 NGC6514 18h 02.3m -23 02' 29x27 6.3 人马座 三叶星云 M21 NGC6531 18h 04.6m -22 30' 13 5.9 人马座 疏散星团 M22 NGC6656 18h 36.4m -23 54' 24 5.1 人马座 球状星团 M23 NGC6494 17h 56.8m -19 01' 27 5.5 人马座 疏散星团 M24 NGC6603 18h 18.4m -18 25' 90 4.5 人马座 疏散星团 银河补丁 M25 IC4725 18h 31.6m -19 15' 32 4.6 人马座 疏散星团 M26 NGC6694 18h 45.2m -9 24' 15 8.0 盾牌座 疏散星团 M27 NGC6853 19h 59.6m +22 43' 8x4 8.1 狐狸座 行星状星云 哑铃星云 M28 NGC6626 18h 24.5m -24 52' 11 6.9 人马座 球状星团 M29 NGC6913 20h 23.9m +38 32' 7 6.6 天鹅座 疏散星团 M30 NGC7099 21h 40.4m -23 11' 11 7.5 魔羯座 球状星团 M31 NGC224 0h 42.7m +41 16' 178x63' 3.4 仙女座 旋涡星系仙女星系 M32 NGC221 0h 42.7m +40 52' 8x6 8.2 仙女座 星系 M33 NGC598 1h 33.9m +30 39' 62x39 5.7 三角座 旋涡星系 三角座星系 M34 NGC1039 2h 42.0m +42 47' 35 5.2 英仙座 疏散星团 M35 NGC2168 6h 08.9m +24 20' 28 5.1 双子座 疏散星团 M36 NGC1960 5h 36.1m +34 08` 12 6.0 御夫座 疏散星团 M37 NGC2099 5h 52.4m -32 33' 24 5.6 御夫座 疏散星团 M38 NGC1912 5h 28.7m +35 50' 21 6.4 御夫座 疏散星团 M39 NGC7092 21h 32.2m +48 26' 32 4.6 天鹅座 疏散星团 M40 Winnecke4 12h 22.4m +58 05' — 8.0 大熊座 双星 两颗恒星相距50'' M41 NGC2287 6h 47.0m -20 44' 38 4.5 大犬座 疏散星团 M42 NGC1976 5h 35.4m -5 27` 66X60 4 猎户座 最亮的星云(猎户座大星云) M43 NGC1982 5h 35.6m -5 16' 20X15 9 猎户座 弥漫星云 猎户座大星云东北部 M44 NGC2632 8h 40.1m +19 59' 95 3.1 巨蟹座 疏散星团 蜂巢星团(鬼星团) M45 Mel22 3h 47.0m +24 07' 110 1.2 金牛座 昴星团 M46 NGC2437 7h 41.8m -14 49' 27 6.1 船尾座 疏散星团 M47 NGC2422 7h 36.6m -14 30' 30 4.4 船尾座 疏散星团 M48 NGC2548 8h 13.8m -5 48' 54 5.8 长蛇座 疏散星团 M49 NGC4472 12h 29.8m +8 00' 9x7 8.4 室女座 星系 M50 NGC2323 7h 03.2m +8 20' 16 5.9 麒麟座 疏散星团 M51 5194-5 13h 29.9M +47 12' 11X8 8.1 猎犬座 漩涡星系(猎犬座星系) M52 NGC7654 23h 24.2m +61 35` 13 6.9 仙后座 疏散星团 M53 NGC5024 13h 12.9m +18 10' 13 7.7 后发座 球状星团 M54 NGC6715 18h 55.1M -30 29' 9 7.7 人马座 球状星团 M55 NGC6809 19h 40.0m -30 58' 19 7.0 人马座 球状星团 M56 NGC6779 19h 16.6m +30 11' 7 8.2 天琴座 球状星团 M57 NGC6720 18h 53.6m +33 02' 1.4x1.0 9.0 天琴座 行星状星云 M58 NGC4579 12h 37.7m +11 49' 5x4 9.8 室女座 星系 M59 NGC4621 12h 42.0m +11 39' 5x3 9.8 室女座 椭圆星系 M60 NGC4649 12h 43.7m +11 33' 7x6 8.8 室女座 椭圆星系 M61 NGC4303 12h 21.9m +4 28' 6x6 6.6 室女座 旋涡星系 M62 NGC6266 17h 01.2m +30 07' 14 8.8 蛇夫座 球状星团 M63 NGC5055 13h 15.8m +42 02' 12x8 8.6 猎犬座 旋涡星系 太阳花星系 M64 NGC4826 12h 56.7m +21 41' 9x5 8.5 后发座 旋涡星系 黑眼星系 M65 NGC3623 11h 18.9m +13 05' 10x3 9.3 狮子座 旋涡星系 M66 NGC3627 11h 20.2m +12 59' 9x4 9.0 狮子座 旋涡星系 M67 NGC2682 8h 50.4m +11 49' 30 6.9 巨蟹座 疏散星团 M68 NGC4590 12h 39.5m +26 45' 12 8.2 长蛇座 球状星团 M69 NGC6637 18h 31.4m -32 21' 4 7.7 人马座 球状星团 M70 NGC6681 18h 43.2m -32 18' 8 8.1 人马座 球状星团 M71 NGC6838 19h 53.9m +18 47' 7 8.3 天箭座 球状星团 M72 NGC6981 20h 53.5m -12 32' 6 9.4 宝瓶座 球状星团 M73 NGC6994 20h 59.0m -12 38' 3 8.9 宝瓶座 疏散星团 M74 NGC628 1h 36.7m +15 47' 10x10 9.2 双鱼座 星系 M75 NGC6864 20h 06.1m -21 55' 6 8.6 人马座 球状星团 M76 NGC651 1h 42.4m +51 34' 1 12.2 英仙座 行星状星云 M77 NGC1068 2h 42.7m -00 01' 7x6 8.8 鲸鱼座 星系 M78 NGC2068 5h 46.7m +00 03' 8x6 - 猎户座 弥散星团 M79 NGC1904 5h 24.5m +24 33' 9 8.0 天兔座 球状星团 M80 NGC6093 16h 17.1m +22 59' 9 7.2 天蟹座 球状星团 M81 NGC3031 9h 55.6m +69 04' 26x14 6.9 大熊座 星系 M82 NGC3034 9h 55.8m +69 41' 11x5 8.4 大熊座 星系 M83 NGC5236 13h 37.0m -18 52' 11x10 8.0 长蛇座 星系 M84 NGC4374 12h 25.1m +12 53' 5x4 9.3 室女座 星系 M85 NGC4382 12h 25.4m +18 11' 7x5 9.2 后发座 星系 M86 NGC4406 12h 26.2m +12 57' 7x6 9.2 室女座 星系 M87 NGC4486 12h 30.8m +12 24' 7x7 8.6 室女座 星系 M88 NGC4501 12h 32.0m +14 25' 7x4 9.5 后发座 星系 M89 NGC4552 12h 35.7m +12 33' 4x4 9.8 室女座 星系 M90 NGC4569 12h 36.8m +13 10' 10x5 9.5 室女座 星系 M91 NGC4548 12h 35.4m +14 30' 5x4 10.2 后发座 星系 M92 NGC6341 17h 17.1m +43 08' 11 6.5 武仙座 球状星团 M93 NGC2447 7h 44.6m +23 52' 22 6.2 船尾座 疏散星团 M94 NGC4736 12h 50.9m +41 07' 11x9 8.2 猎犬座 星系 M95 NGC3351 10h 44.0m +11 42' 7x5 9.7 狮子座 星系 M96 NGC3368 10h 46.8m +11 49' 7x5 9.2 狮子座 星系 M97 NGC3587 11h 14.8m +55 01' 3 12.0 大熊座 行星状星云 猫头鹰星云 M98 NGC4192 12h 13.8m +14 54' 10x3 10.1 后发座 星系 M99 NGC4254 12h 18.8m +14 25' 5x5 9.8 后发座 星系 M100 NGC4321 12h 22.9m +15 49' 7x6 9.4 后发座 星系 M101 NGC5457 14h 03.2m +54 21' 27x26 7.7 大熊座 星系 M102 NGC5866 15h 06.5m +55 46' 5x2 10.0 天龙座 星系 车轮星系 M103 NGC581 1h 33.2m +60 42' 6 7.4 仙后座 疏散星团 M104 NGC4594 12h 40.0m -11 37' 8x4 8.3 室女座 星系 草帽星系 M105 NGC3379 10h 47.8m +12 35' 5x4 9.3 狮子座 星系 M106 NGC4258 12h 19.0m +47 18' 18x8 8.3 猎犬座 星系 M107 NGC6171 16h 32.5m -13 03' 10 8.1 蛇夫座 球状星团 M108 NGC3556 11h 11.5m +55 40' 8x3 10.1 大熊座 星系 M109 NGC3992 11h 57.6m +53 23' 8x5 9.8 大熊座 星系 M110 NGC205 0h 40.4m +41 41' 17x10 8.0 仙女座 星系
561赞·34,769浏览2017-11-26
与科幻有关的星球的名字,越多越好
1、塞伯坦星球 塞伯坦,是美日合作开发的《变形金刚》(玩具、动画、影片等系列产品)剧情中变形金刚的母星。 塞伯坦又译作“赛博坦”或“塞伯特恩”,变形金刚种族的母星,美版名为Cybertron,其实体为变形金刚种族的造物神Primus(元始天尊)。 塞伯坦围绕半人马座阿尔法星轨道运行,是一个和地球近邻土星体积近似的巨大金属行星。它由多种不同属性的金属矿石组成,是那些能使自己身体在机器人形态和各种变形形态之间转换的强大机械生命体的故乡。数百万年来,主要派别——汽车和霸天虎。 2、潘多拉星球 潘多拉(Pandora)是电影《阿凡达》中虚构的一颗卫星。学名“半人马阿尔法B-4”,是半人马阿尔法星中的一颗星球,大小和地球差不多。潘多拉并不是一个行星,它其实是一个巨型气体行星的卫星。 3、死星 刘慈欣小说《超新星纪元》中提到的一颗恒星,那颗恒星直径是太阳的二十三倍,质量是太阳的六十七倍,步入晚年期。 4、瓦肯星 瓦肯(Vulcan)一般指的是瓦肯星。瓦肯星是美剧——《星际迷航》系列电视连续剧中宇宙和星际联邦中最重要的智慧种族之一——瓦肯人的母星。 5、致远星 致远星(Reach)是畅销游戏及小说《光晕》(HALO)中人类的近地殖民星球,也是UNSC(联合国太空司令部)的指挥部所在地。因为富含用于制造人类太空战舰装甲的主要材料——A级钛合金的原料金属钛,致远星也是UNSC大型战舰的生产基地。
11赞·10,305浏览2019-09-02
星球名字大全
太多了
8赞·1,388浏览2016-03-13
求各种行星的名字和图片,谢谢
水星 水星 (Mercury ),中国古代称为辰星。是太阳系中的类地行星,也是岩态行星,其主要由石质和铁质构成,密度较高。自转周期很长为58.65天,自转方向和公转方向相同,水星在88个地球日里就能绕太阳一周,平均速度47.89km/s,是太阳系中运动最快的行星。无卫星环绕。它是八大行星中是最小的行星,也是离太阳最近的行星。 金星 金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。中国古代称之为长庚、启明、太白或太白金星。公转周期是224.71地球日。夜空中亮度仅次于月球,排第二,金星要在日出稍前或者日落稍后才能达到亮度最大。它有时黎明前出现在东方天空,被称为“启明”;有时黄昏后出现在西方天空,被称为“长庚”。 地球 地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。赤道半径为6378.2公里,其大小在行星中排列第五位。地球有大气层和磁场,表面的71%被水覆盖,其余部分是陆地,是一个蓝色星球。地球是包括人类在内上百万种生物的家园,也是目前人类所知宇宙中唯一存在生命的天体。地球已有45亿岁,有一颗天然卫星月球围绕着地球以27.32天的周期旋转,而地球自西向东旋转,以近24小时的周期自转并且以一年的周期绕太阳公转。 火星 火星(Mars)是太阳系八大行星之一,是太阳系由内往外数的第四颗行星,属于类地行星,直径约为地球的一半,自转轴倾角、自转周期均与地球相近,公转一周约为地球公转时间的两倍。在西方称为“战神玛尔斯”,中国则称为“荧惑”。橘红色外表是因为地表的赤铁矿(氧化铁)。火星基本上是沙漠行星,地表沙丘、砾石遍布,没有稳定的液态水体。二氧化碳为主的大气既稀薄又寒冷,沙尘悬浮其中,每年常有尘暴发生。火星两极皆有水冰与干冰组成的极冠,会随着季节消长。 木星 木星,为太阳系八大行星之一,距太阳(由近及远)顺序为第五,亦为太阳系体积最大、自转最快的行星。木星已知63颗卫星,木星主要由氢和氦组成,中心温度估计高达30,500℃。古代中国称之岁星,取其绕行天球一周为12年,与地支相同之故。西方语言一般称之朱比特(拉丁语:Jupiter),源自罗马神话中的众神之王、相当于希腊神话中的宙斯。 土星 土星,为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。古代中国亦称之镇星或填星。 土星主要由氢组成,还有少量的氦与微痕元素,内部的核心包括岩石和冰,外围由数层金属氢和气体包覆著。最外层的大气层在外观上通常情况下都是平淡的,虽然有时会有长时间存在的特征出现。土星的风速高达1,800公里/时,明显的比木星上的风快速。土星的行星磁场强度介于地球和更强的木星之间。 土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土。已经确认的土星的卫星有62颗。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(半径2575KM)(太阳系最大的卫星是木星的木卫三,半径2634KM),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星。 天王星 天王星是太阳向外的第七颗行星,在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神乌拉诺斯(Οὐρανός),是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。威廉·赫歇耳爵士在1781年3月13日宣布他的发现,在太阳系的现代史上首度扩展了已知的界限。这也是第一颗使用望远镜发现的行星。 海王星 海王星(Neptune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。海王星以罗马神话中的尼普顿(Neptunus),因为尼普顿是海神,所以中文译为海王星。天文学的符号,是希腊神话的海神波塞冬使用的三叉戟。 冥王星 冥王星,或被称为134340号小行星,于1930年1月由克莱德·汤博根据美国天文学家洛韦尔的计算发现,并以罗马神话中的冥王普路托(Pluto)命名。它曾经是太阳系九大行星之一,但后来被降格为矮行星。与太阳平均距离59亿千米。直径2300千米,平均密度0.8克/立方厘米,质量1.290×10^22 千克。公转周期约248年,自转周期6.387天。表面温度在-220°c以下,表面可能有一层固态甲烷冰。暂时发现有四颗卫星。自从70多年前被发现的那天起,冥王星便与“争议”二字联系在了一起,一是由于其发现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。冥王星轨道最扁,以致最近20年间冥王星离太阳比海王星还近。从发现它到现在,人们只看到它在轨道上走了不到1/4圈,因此过去对其知之甚少。冥王星的质量远比其他行星小,甚至在卫星世界中它也只能排在第七、第八位左右。冥王星的表面温度很低,因而它上面绝大多数物质只能是固态或液态,即其冰幔特别厚,只有氢、氦、氖可能保持气态,如果上面有大气的话也只能由这三种元素组成。 进入21世纪,天文望远镜技术的改进,使人们能够进一步对海王星外天体(trans-Neptunian objects)有更深了解。2002年,被命名为50000 Quaoar(夸欧尔)的小行星被发现,这个新发现的小行星的直径(1280公里)要长于冥王星的直径的一半。2004年,被命名为90377 Sedna(塞德娜)的小行星的最大直径也达到了1800公里,而冥王星的直径也只不过2320公里左右。 2005年7月9日,又一颗新发现的的海王星外天体被宣布正式命名为厄里斯(Eris)。根据厄里斯的亮度和反照率推断,它要比冥王星略大。这是1846年发现海王星之后太阳系中所发现的最大天体。尽管当初并没有官方的共识,它的发现者和众多媒体起初都将之称为“第十大行星”。也有天文学家认为厄里斯的发现为重新考虑冥王星的行星地位提供了有力佐证。 就连冥王星的显著特征——它的卫星和大气,也并不是独一无二的,海王星外天体带中的一些小行星也有自己的卫星。而且厄里斯的天体光谱分析也显示它和冥王星有着相似的地表,此外厄里斯也有一个较大的卫星戴丝诺米娅(Dysnomia)。 “星籍”争议 而冥王星符合上述第三条行星标准。 国际天文学同盟会进一步决议通过冥王星应该归入矮行星(dwarf planet)之列,而且可以作为尚未命名的一类海王星外天体的原形。在此决议之前,人们也提出了不同的行星方案,其中一些甚至提到除了冥王星外也取消火星和水星的行星资格,而另外一些则提议将一些小行星也纳入行星之列。
233赞·12,454浏览2017-09-13
宇宙中所有的星系名称
放开眼界,环顾整个宇宙,浩瀚无垠。宇宙中都有些什么呢? 我们居住的地球是太阳的一个大行星。太阳系中的九个大行星以太阳为中心由内向外排列的顺序是:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。其中除了水星和金星外,其余七颗行星都有自己的卫星,目前,太阳系中已发现的卫星有近50颗。在太阳系中,还有为数众多的小行星、彗星、流星和陨星等。那么,在太阳系之外,还有什么呢? 在晴朗的夜晚,天空布满了星星,其中,恒星占绝对多数。恒星,就是像太阳一样自己能够发光的天体。我们银河系就有上千亿颗恒星。恒星的体积、光度、质量和密度等都有很大差别。有的星星很亮,光度比太阳大上百倍到一万倍,这种星叫巨星。有的星星,光度比太阳亮上万倍到几百万倍,半径可超过太阳的一千倍,叫做超巨星。还有一种光度低、体积小而密度极大的白色星叫白矮星。 有的白矮星光度小到只有太阳的几万分之一,体积只有地球的几十分之一大,而密度却大到每立方厘米几百公斤、几吨甚至上千吨。目前已经发现的白矮星就有1000多颗,据估计,光我们银河系的白矮星就有100亿颗。1967年,人们发现了一种快速自转的中子星,又叫脉冲星。中子星是恒星中最小的侏儒,大多数中子星的直径只有10公里左右,可是它的密度却大得惊人,每立方厘米达1亿吨,如果用万吨巨轮来拖,中子星上1立方厘米的物质需要1
② 求介绍几个著名的星体
你是想知道宇宙星体种类的分类么?星体分类是有挺多的,那从最常见的开始介绍吧。
恒星:恒星是你在天空中能看到的最多的天体,太阳就是一颗恒星。恒星是内部能够产生核聚变释放能量,从而是自己能够发光发热的天体。恒星根据质量大小不同以及生命演化阶段的不同又有多种的分类;
主序星:主序星是恒星处于氢聚变的阶段,恒星在主序星阶段内核只发生氢聚变。如果你不能理解这个的话,你可以把主序星看做恒星的“壮年期”。恒星根据自身质量的不同主序星阶段的时间也不同。大质量恒星的主序星阶段最短只有几百万年,而最小的恒星主序星阶段可以保持数万亿年。太阳的主序星阶段可以持续90亿年左右,现在还可以持续大约40到50亿年。
红巨星:恒星离开主序星阶段后就进入了晚年期,恒星内部会发生更强烈的核聚变,从而导致恒星体积膨胀数百万倍,红巨星是像太阳这样中等质量恒星濒临死亡时的一个短暂阶段,太阳的红巨星阶段只能持续10亿年。
白矮星:当太阳这样中等质量恒星演变成红巨星后,内核就会发生新的变化。处于红巨星阶段的太阳会不断将内核转换成一颗白矮星。随着红巨星的太阳整体结构瓦解,恒星就已经死亡。它所残留的只有一颗炽热、浓缩的内核。红巨星最终演化成了一颗白矮星,这也是太阳这类中等质量恒星的最终结局。
——————————————————————————————————————————
蓝巨星:蓝巨星是大质量恒星的主序星阶段,质量一般在太阳的10倍以上。由于恒星能量喷发强烈,恒星温度更高,所以发出耀眼的蓝光或者白光。除了颜色不同以及能量释放更强之外与一般主序星没有太大区别,内核仍然只发生氢聚变。蓝巨星这类大质量恒星的主序星阶段一般只持续几百万年到1000万年左右,就会进入下个阶段。
红超巨星:蓝巨星的主序星阶段结束后就会演化成红超巨星。由于内核的能量释放变得更加强烈,它的体积会因此膨胀数千万倍甚至数亿倍,成为红超巨星。红超巨星是大质量恒星濒临死亡的一个阶段,一般只持续几百万年。
超新星:当红超巨星内核的核燃料耗尽,恒星熄火后,恒星的整体结构就会在重力作用下轰然倒塌并猛烈挤压,引发剧烈的爆炸,成为超新星。超新星的亮度可以胜过整个银河系,它瞬间释放的能量是太阳正常发光的数万亿倍。仅在短短几秒钟的时间里,超新星就能产生巨大的能量,比太阳100亿年光和热的能量的总和还要大。大质量恒星以超新星爆发来结束自己的生命。
中子星:比太阳质量大8倍以上的恒星死亡时会发生超新星爆发。这些大质量恒星在超新星爆炸后回留下一颗中子星的残骸。中子星具有极高的密度,一立方厘米,也就是一块小方糖大小的中子星重达1亿吨。
脉冲星:脉冲星是中子星的一种,与一般中子星不同的是,脉冲星保持高速的自转状态,有些脉冲星的自转速度可以达到每秒钟1000转,在自转的过程中脉冲星的两极向外喷射出高能电磁脉冲,因此得名脉冲星。
磁星:磁星是比脉冲星更加神秘的中子星,它是在比太阳质量大30倍左右的恒星爆炸时留下来的残骸。磁星拥有强大的磁场,在某些阶段条件下,磁场强度可以达到地球的数百万亿倍。这种磁场非常强大,能在数万公里远的地方将我们血液中的铁吸走。
黑洞:黑洞是超大质量恒星发生超新星爆炸后留下的残骸,黑洞是一种引力极强的天体,它巨大的引力被浓缩在一个很小的区域里,导致这一区域内的光都不能逃脱,所以黑洞漆黑一片。当比太阳重10倍的恒星死亡时,它们会在引力的挤压下发生剧烈爆炸,形成超新星。科学界们发现,有些恒星更为庞大,这些超巨星比太阳还重100倍。它们死亡时引发了宇宙中最剧烈的爆炸,形成了超超新星。黑洞就是这样诞生的。
——————————————————————————————————————————
行星:说完了恒星来说非恒星天体了,一个星球要想成为行星要满足三个条件,1是自身必须有足够大的质量,这样引力才能将自身挤压成球形。2是必须围绕一颗恒星公转,我们不能把围绕行星公转的卫星计算在内。3则是行星必须有足够大的引力来清除轨道障碍,其涵义是如果你将一堆碎片丢入某个行星的公转轨道内,如果行星的引力能将这些碎片抛出轨道范围,或者在长达40亿年的时间里将碎片一一吞噬,那么它就是一颗行星,如果做不到,它就不能被称为行星。曾经的九大行星冥王星就是因为做不到第三点被降级成为“矮行星”。
行星质量天体:行星质量天体是指那些具备了行星的质量和体积,但自己却没有围绕恒星公转,而是在宇宙中四处游荡的天体,这类天体在宇宙中有很多,但运转方式与行星截然不同,所以科学界们给了这类天体一个特殊的归类:行星质量天体。
矮行星:矮行星也就是自身质量足够大能称为球形,围绕恒星公转,但不能清除轨道障碍的天体,被降级的冥王星现在就被归类为一颗矮行星。
卫星:卫星就是围绕行星公转的星体,卫星自身没有任何质量体积要求,理论上只要是围绕行星公转的物体都可以称为行星的卫星。也就是说构成土星光环那些每一个小碎片其实都是一颗土星卫星。当然我们平常所说的卫星都是指那些较大的卫星,小碎片本身没有太大的研究意义,所以往往都会忽略它们。
小行星:小行星就是围绕恒星公转的天体,但满足不了自身成为球体,更满足不了清除轨道障碍的要求。任何一块岩石或者冰封碎片只要围绕一颗恒星公转,都可以被成为小行星。
彗星:彗星是能够产生慧尾的小行星,这类小行星由于自身存在冰晶类物质,当靠近太阳时,太阳的热量加热冰晶,造成冰晶升华形成彗尾,被我们所看到,所以称为彗星。彗尾在远离太阳(超过木星距离)时不会产生,所以那些远离太阳的彗星除了个头比小行星较大之外与普通小行星没有任何区别。
流星:流星是小行星进入大气层时,与大气层猛烈摩擦燃烧形成的瞬间现象,往往持续时间不足一秒。除了好看之外没有什么特别之处。如果小行星体积较大,在坠落地面之前大气层没有将其燃烧殆尽时,小行星就会猛烈撞击地面,产生巨大的破坏力,坠落地面的小行星残骸被称为“陨石”。
这些是我们一般人能接触到的最常见的一些星体了。 本来还想发个类星体的,结果网络说什么回答里有不恰当的内容不让发让我很无语,所以就没发了。。
③ 人的肉眼可以看到哪些有名的星球
离我们地球最近的星――当然是月亮,它是地球的卫星,和地球组成了一个最简单的天体系统――地月系。它距离我们的平均距离为38.4万公里。每秒十几公里的阿波罗宇宙飞船需要飞70多小时才能飞到,而每秒30万公里的光只需一秒多就可以到达月球。包括我们地球在内的九大行星带着自己的卫星都在围绕着太阳运行,组成了一个较大的天体系统――太阳系。太阳系的中心天体----太阳,也是离我们最近的一颗恒星,距离地球平均为1.49亿公里。这个距离宇宙飞船得飞一两年。从太阳上发出的光,需要经过8分18秒才能达到地球。我们任何时候看到的太阳,都是它在8分多钟以前的样子。太阳系的第九颗行星,也是目前已知的最远行星,距离地球最近时约为57亿公里。如果从地球上发一束光到冥王星上去,也得走5个多小时。冥王星也并不是太阳系的边界。有一些绕太阳运行的彗星,是从几百亿几千亿公里外的空间飞来的,它们比冥王星远几百倍乃至上千倍。然而,这些天体毕竟都是太阳系内的天体。我们在夜空里看到的随便哪一颗恒星都要比这远得多。位于南天星空半人马座中的一颗亮星――南门二,是离我们太阳系最近的恒星,距离我们大约4.2光年。从南门二发出的光,需要经过4年多才能到达地球。但南门二并不是天空中最亮的恒星,最亮的恒星是天狼星,距离我们约为8光年。著名的牛郎星和织女星距离我们分别为16和27光年。距离我们在几十光年以内的恒星只有几十颗,大部分恒星距离我们都在几百光年到几万光年。所有这些恒星包括我们的太阳系在内,组成了一个直径约10万光年的银河系。再往远处,我们肉眼已经分辨不出星星了。那是离我们更远的和我们银河系一样的河外星系。它们肉眼看起来只是一小片模糊的云。距离我们最近的河外星系是位于南天星空的大麦哲伦云,距离我们为17万光年。在秋夜星空中有一个著名的仙女座大星云,是距离我们约为220万光年的遥远星系,即使在大型望远镜里也很难分辨出组成它的星星。包括它们以及我们银河系在内的几十个星系,组成了一个直径大约600万光年的星系集团,叫做本星系群。本星系群之外是更远更大的星系集团。例如,室女座星系团(约有2000多个星系)距离我们5000万光年,后发座星系团(约有1万多个星系)距离我们3.5亿光年。这样的星系集团目前已发现上万个,距离已远到80亿光年。本世纪六十年代发现的一种天体,外表看起来象恒星,但能量比星系还大,天文学家叫它类星体。它是目前人类所知的最遥远的天体。80年代澳大利亚科学家发现的一颗类星体竟远达200亿光年!
④ 世界上有几个星球
“宇宙”一词,最早大概出自我国古代著名哲学家墨子(约公元前468-376)。他用“宇”来指东、西、南、北,四面八方的空间,用“宙”来指古往今来的时间,合在一起便是指天地万物,不管它是大是小,是远是近;是过去的,现在的,还是将来的;是认识到的,还是未认识到的……总之是一切的一切。
从哲学的观点看。人们认为宇宙是无始无终,无边无际的。不过,对这个深奥的概念我们不打算做深入的探讨,还是留给哲学家们去研究。我们不妨把眼光缩小一些,讲一讲利用我们现有的科学技术所能了解和观测的宇宙,人们把它称为“我们的宇宙”或“总星系”。
从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。这130亿光年的距离便是我们今天所知道的宇宙的范围。再说得明确一些,我们今天所知道的宇宙范围,或者说大小,是一个以地球为中心,以130亿光年的距离为半径的球形空间。当然,地球并不真的是什么宇宙的中心,宇宙也未必是一个球体,只是限于我们目前的观测能力,我们只能了解到这一程度。
在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥在多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。
⑤ 目前世界上发现的最大的星球是什么星球
猎户座亮星极多,复其中最著名的就制属参宿四,即猎户座α星。西名betelgeuse,源自阿拉伯语,意思是腋下。全天第10亮星,亮度在0.06`0.75等之间变化,变化周期为5年半,属于不规则变星。它是MIab型红超巨星,半径在太阳的700倍到1000倍间变化,如果把它放在我们的太阳这个位置,外围将超过木星。而半径的变化使得它的光度也跟著变化,亮度会在0.4至1.3间变化。绝对星等-6等,它距离我们约500光年,质量为太阳的15倍,表面温度3500开,光度为太阳的10万倍,体积为太阳的325万倍,是迄今人类发现的体积最大的恒星。因为又近又大,使它成为除了太阳之外,人类首度能解析出表面大小的恒星。参宿四已走入生命末期,推测在未来数百万年中,可能变成超新星。
⑥ 谁知道银河系中有名的行星或恒星
宇宙
它们都是天体,彗星是由冰冻着的各种杂质、尘埃组成的。天文学家们形象地称它为“脏雪球”。当它跑到太阳附近时,在太阳光和热的作用下,“脏雪球”外层的脏雪及凝固的气体和冰块迅速蒸发、气化、膨胀,并喷发出来,这时彗星的体积急剧地膨胀起来并明显地分成了两部分:彗头和彗尾。彗头中央最明亮的部分为彗核,它是“脏雪球”的本体;彗核表面气化、喷发出来的物质包在彗核周围,形成彗发。彗发外面还包着一层稀薄的氢云,称为彗云。拖在彗头后面的尾巴就是彗尾,它是由于彗头中的气体、尘埃等物质被太阳强大的辐射压和太阳风推挤出来而形成的。所以,彗尾总是背向太阳,离太阳越近,彗尾越长。
小行星是一些围绕太阳运转但因为太小而称不上行星的天体。小行星可大至如直径约1000公里的Ceres 小行星,小至与鹅卵石一般。有16颗小行星的直径超过 240公里。它们位于地球轨道以内到土星的轨道以外的空间中。而大多数小行星集中在火星与木星轨道之间的小行星带里。有些小行星的轨道与地球轨道相交,有些小行星还曾与地球相撞。
小行星是太阳系形成后的剩余物质。一种推测认为它们是一颗在很久以前一次巨大碰撞中被毁的行星的遗留物。然而这些小行星更像是些从未组成过单一行星的物质。事实上,如果将所有的小行星加在一起组成一个单独的天体,它的直径还不到1500公里——比月球的半径还小。
由于小行星是早期太阳系的物质,科学家们对它们的成份非常感兴趣。宇宙探测器经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间分隔得非常遥远。在1991年以前所获的小行星数据仅通过基于地面的观测。1991年10月,伽利略号木星探测器访问了951 Gaspra小行星,从而获得了第一张高分辨率的小行星照片。1993年8月,伽利略号又飞经了243 Ida小行星,使其成为第二颗被宇宙飞船访问过的小行星。 Gaspra和Ida小行星都富含金属,属于S型小行星。
我们对小行星的所知很多是通过分析坠落到地球表面的太空碎石。那些与地球相撞的小行星称为流星体。当流星体高速闯进我们的大气层,其表面因与空气的摩擦产生高温而汽化,并且发出强光,这便是流星。如果流星体没有完全烧毁而落到地面,便称为陨星。 牋?经过对所有陨星的分析,其中 92.8%的成分是二氧化硅(岩石),5.7%是铁和镍,剩余部分是这三种物质的混合物。含石量大的陨星称为陨石,含铁量大的陨星称为陨铁。因为陨石与地球岩石非常相似,所以较难辨别。
1997年 6月27日,NEAR探测器与253 Mathilde小行星擦肩而过。这次机遇使得科学家们第一次能近距离观察这颗富含碳的 C型小行星。此次访问由于NEAR探测器不是专门用来对其进行考察而成为唯一的一次访。NEAR是用于在1999年 1月对Eros小行星进行考察的。
天文学家们已经对不少小行星作了地面观察。一些知名的小行星有Toutais、Castalia、Vesta和Geographos等。对于小行星Toutatis、Castalia和Geographos,天文学家是在它们接近太阳时,在地面通过射电观察研究它们的。Vesta 小行星是由哈勃太空望远镜发现的。
小行星的发现同提丢斯- 波得定则的提出有密切联系,根据该定则,在距太阳距离为2.8 天文单位处应有一颗行星,1801年元旦皮亚奇果真在该处发现了第一颗小行星谷神星。在随后的几年中同谷神星轨道相近的智神星,婚神星,灶神星相继被发现。天文照相术的引进和闪视比较仪的使用,使得小行星的的年发现率大增,到1940年具有永久性编号的小行星已经有1564颗。其中,德国天文学家恩克和汉森因长于轨道计算,沃尔夫和赖因穆特在观测上有许多发现而贡献尤大。
小行星的命名权属于发现者。早期喜欢用女神的名字,后来改用人名,地名,花名乃至机构名的首字母缩写词来命名。有些小行星群和小行星特别著名,如脱罗央群,阿波罗群,伊卡鲁斯,爱神星,希达尔戈等。按轨道根数作统计分析,轨道倾角在约5 度和偏心率约0.17处的小行星数目最多。柯克伍德缝是按小行星平均日心距离统计得到的最著名的分布特征。小行星数N 与平均冲日星等m 之间有统计关系logN=0.39m-3.3,小行星直径d 同绝对星等g 之间满足统计公式logd(公里)=3.7-0.2g。小行星数随直径的分布在直径约30公里附近出现间断。
卫星很多,这里只介绍木卫1,木卫一由伽利略和Marius于1610年发现。
与外层太阳系的卫星不同,木卫一与木卫二的组成与类地行星类似,主要由炽热的硅酸盐岩石构成。最近从伽利略号上发回的数据表明,木卫一有一个半径至少为900千米的铁质内核(可能混有含铁硫化物)。
木卫一的表面与太阳系中其他星体孑然不同,这使得旅行者号的科学家在第一次接触时非常惊奇。他们原以为在类地星体上应布满了受撞击后留下的大大小小的环形山,然后以单位面积内留下的“弹坑”来估计星球外壳的年龄。但实际上木卫一的表面环形山太少,简直屈指可数。这样看来,该表面非常年轻。
除了环形山,旅行者1号发现了数百破火山口,其中的一些仍然活跃!羽毛状的喷出物高达300千米,这些惊人的照片由伽利略号(下图)与旅行者号(右图)传回。这可能是旅行者号任务中最重要的单一发现,这是类地星体内部炽热与活动的第一份实际证明。这些物质看来是以硫或二氧化硫的形式从火山口中的喷出。火山爆发相当迅速,只是在旅行者1号和旅行者2号4个月中先后到达的时间里,一些活动停止,另一些则又开始了。在喷口周围的堆积物同样有可见的变化。
最近从安放在夏威夷的Mauna Kea的NASA红外线望远镜设备获得的照片看来,木卫一有一次新的巨大的火山爆发(右图)。在Ra Patera地区的新情况已被哈博望远镜所看到。来自伽利略号的图片也显示了自旅行者号与其接触后其表面的一些变化。这些观察证明了木卫一的表面实在相当活跃。
木卫一有令人惊异的多种地形:有向下有数千米深的火山口,有炽热的硫湖(下右图),有很明显不过的非火山的连绵山脉(左图),流淌着数百千米长的粘稠的液体(硫的某种形式?),还有一些火山喷口。硫和其化合物的多种颜色使得木卫一表面的颜色多样化。
对旅行者号的图片分析使得科学家确信木卫一表面的熔岩流大多由炽热的硫的化合物组成。然而,接下去的基于地表的研究表明对那里温度过高,不会有液态硫。一个当前彩的说法是,木卫一的熔岩流是由炽热的硅酸盐岩石组成的。最近的哈博望远镜的观察表明那些物质中可能富含钠,或者说那里不同的地方物质有着不同的组成成份。
木卫一表面的最热点温度可达1500开,虽然它的平均温度只有大约130开。这些热点是木卫一损失其热量的主要原因。
它所有活动所需要的能量可能来自与它与木卫二,木卫三及木星之间的交互引潮力。这三颗卫星的共动关系固定,木卫一的公转周期是木卫二的两倍,后者是木卫三的两倍。虽然木卫一就像地球的卫星月球一般,只用固定的一面朝向其主星,由于木卫二与木卫三的作用使它有一点点不稳定。它使木卫一扭动、弯曲,大约有100米长(100的大潮!),并在复原扭曲的循环中产生能量。(月亮并不是由这种方式被地球加热,因为它缺少另一个星体扰乱它。)
木卫一同样切割木星的磁场线,生成电流。对于引潮力而言由此产生的能量不多,但电流的功率仍有1兆瓦特。它也剥去了一些木卫一的物质,并在木星周围产生强烈的凸起状辐射。在凸出面中脱离的粒子部分地造成了木星的巨大磁层。
来自伽利略号的最近数据显示木卫一可能有自己的磁场,就像木卫三一样。
木卫一有稀薄的大气,由二氧化硫与其他气体组成。
不像其他伽利略发现的卫星,木卫一几乎没有水。这可能由于在太阳系进化过程的初期,木星太热,使得木卫一附近的可挥发性物质被蒸发,而它又并非过热而把所有水份榨干。
恒星
在地球上遥望夜空,宇宙是恒星的世界。
恒星在宇宙中的分布是不均匀的。从诞生的那天起,它们就聚集成群,交映成辉,组成双星、星团、星系……
恒星是在熊熊燃烧着的星球。一般来说,恒星的体积和质量都比较大。只是由于距离地球太遥远的缘故,星光才显得那么微弱。
古代的天文学家认为恒星在星空的位置是固定的,所以给它起名“恒星”,意思是“永恒不变的星”。可是我们今天知道它们在不停地高速运动着,比如太阳就带着整个太阳系在绕银河系的中心运动。但别的恒星离我们实在太远了,以至我们难以觉察到它们位置的变动。
恒星发光的能力有强有弱。天文学上用“光度”来表示它。所谓“光度”,就是指从恒星表面以光的形式辐射出的功率。恒星表面的温度也有高有低。一般说来,恒星表面的温度越低,它的光越偏红;温度越高,光则越偏蓝。而表面温度越高,表面积越大,光度就越大。从恒星的颜色和光度,科学家能提取出许多有用信息来。
历史上,天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。在主星序区之上是巨星和超巨星区;左下为白矮星区。
恒星诞生于太空中的星际尘埃(科学家形象地称之为“星云”或者“星际云”)。
恒星的“青年时代”是一生中最长的黄金阶段——主星序阶段,这一阶段占据了它整个寿命的90%。在这段时间,恒星以几乎不变的恒定光度发光发热,照亮周围的宇宙空间。
在此以后,恒星将变得动荡不安,变成一颗红巨星;然后,红巨星将在爆发中完成它的全部使命,把自己的大部分物质抛射回太空中,留下的残骸,也许是白矮星,也许是中子星,甚至黑洞……
就这样,恒星来之于星云,又归之于星云,走完它辉煌的一生。
绚丽的繁星,将永远是夜空中最美丽的一道景致。
星云则是恒星爆炸后的残骸.
太阳系太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。
在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。
九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。
银河系
太阳系所在的恒星系统,包括一二千亿颗恒星和大量的星团、星云,还有各种类型的星际气体和星际尘埃。它的总质量是太阳质量的1400亿倍。在银河系里大多数的恒星集中在一个扁球状的空间范围内,扁球的形状好像铁饼。扁球体中间突出的部分叫“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距4500光年。其各部分的旋转速度和周期,因距银心的远近而不同。太阳距银心约2.3万光年,以250千米/秒的速度绕银心运转,运转的周期约为2.5亿年。
宇宙
宇宙中所有物质中的能量消耗殆尽之日,也就是物质宇宙死亡之时。宇宙中的全部物质分解为囚禁场(“阴”)和能量场(“阳”),此时的宇宙,温度最低;平均能量密度最低;宇宙扩展到最大;裸奇点黑洞彼此相聚最远;原引力的势能达到最大。此时的宇宙已是一片漆黑,宇宙膨胀到最大的环面上,环面上布满了数以十亿计的死亡星系蜕化变为的裸奇点囚禁场或暗星系。这就是物质宇宙末日的景象。
流星
流星群与地球相遇时,在几小时到几天的时间内流星数量显著增加,有时甚至象下雨一样,这种现象称为流 星雨。将发生流星雨时观测到的流星的轨迹反向延长,它们都交于一点,这一点称辐射点。大多数流星雨是以辐射点所在星座或附近的亮星命名的,如“狮子座流星雨”。少数流星雨以与之有联系的彗星命名,如“比拉彗星流星雨”。发生流星雨时,流星的出现率通常是每小时十几个到几十个,但在少数情况下可达每小时成千上万个,这称为流星暴。流星雨是一种周期现象,出现日期基本固定,但由于流星群内的流星体在轨道上的分布是很不均匀的,所以流星雨中流星的数量每年不同,例如狮子座流星雨一般年份规模较小,而每隔33年,会出现一次程度不同的流星暴
陨石
陨石是来自地球之外的“客人”。根据陨石本身所含的化学成分的不同,大致可分为三种类型:
1.铁陨石,也叫陨铁,它的主要成分是铁和镍;
2.石铁陨石,也叫陨铁石,这类陨石较少,其中 铁镍与硅酸盐大致各占一半;
3.石陨石,也叫陨石,主要成分是硅酸盐,这种陨石的数目最多。
陨石包含着大量丰富的太阳系天体形成演化的信息,对它们的实验分析将有助于探求太阳系演化的奥秘。陨石是由地球上已知的化学元素组成的,在一些陨石中找到了水和多种有机物。这成为“地球上的生命是陨石将生命的种子传播到地球的”这一生命起源假说的一个依据。通过对陨石中各种元素的同位素含量测定,可以推算出陨石的年龄,从而推算太阳系开始形成的时期。陨石可能是小行星、行星、大的卫星或彗星分裂后产生的碎块,它能携带来这些天体的原始信息。著名的陨石有中国吉林陨石,中国新疆大陨铁,美国巴林杰陨石,澳大利亚默其逊碳质陨石等。
(完)
参考资料:书上
⑦ 太空科幻作品中有哪些著名的星球和外星种族
比较多,《质量效应》里主角的诺曼底号,无畏舰天命超凡号,《星际旅行》进取号,《太空堡垒卡拉狄加》里的卡拉狄加号,游戏《无尽空间》里每个种族的战舰设计的都不错。
⑧ 宇宙里有哪些知名无生命的星球
在结束太空飞行任务的意大利宇航员罗伯托·维托里5日说,他确信在茫茫浩瀚的宇宙里有其它形式的生命存在。
维托里是在完成为期10天的太空飞行使命刚刚返回地球后,从哈萨克斯坦给罗马打电话向记者作这番表示的。他说,“作为宇航员,我的直觉告诉我,宇宙里的确有其它形式的生命存在。我始终坚信这一点。”
维托里说,“我相信,宇宙里其它形式的生命,其智商似乎也同我们人类差不多。但这同我执行的国际空间站的使命并不相干。我总是这样认为,这同我的宇航经历也丝毫没有任何关系。”
今年37岁的维托里,为执行这次为期10天的太空飞行任务,曾在俄罗斯的“卫星城”模拟太空舱中集中训练过8个月。此前,他曾在美国休斯顿国家航天中心接受过长达3年的技术培训。
“机遇”和“勇气”在火星上忙活着,全世界都看着它们,它们的每一个微小的进展都让人兴奋。3月2日,美国宇航局宣称“机遇”在火星上发现了水,这个消息让科学家们欢欣鼓舞。其实地球人类对茫茫宇宙最挂怀的,就是想找到与自己类似的其他生物,他们似乎很孤独。到底宇宙里有没有其他生命形式?存在生命形式的可能性有多大?<br /><br /> 地球生命的极限<br /><br /> 天文学家们一直以来都在致力于发现外星微生物存在的证据,在火星上、木卫二上……太阳系内一切有条件的地方都是他们寻找的对象。但最近几年最激动人心的外星生命探索的进展却是在地球上完成的。外星生物学家来到地球最恶劣、最极端的地方,在智利最干燥的阿塔卡马沙漠中、在环境最恶劣的岩洞里、在南极洲的千年冰架下面、在几千米的深海下面、在几万米的高空上,他们发现了形形色色的与世隔绝的细菌,它们生命力之顽强令科学家惊叹不已。在南极的古老冻岩中,有一种细菌舒舒服服地躲在石头表面下多孔的空间里,活得跟花店橱窗里的牵牛花一样旺盛;法国科学家曾在太平洋底3000米处,水温高达250℃的热泉口,发现多种细菌;1969年降落月球的“阿波罗12号”太空船,收回了两年半前无人探测船“观察家三号”留在月球上的相机,竟然发现其底部有地球上的微生物“缓症链球菌”,这种来自地球的微生物,在几近真空、充满宇宙射线的月球表面生存了两年半!<br /><br /> 许多种类的细菌无需空气,它们或是通过分解(而不是氧化)有机食物,或是从硫酸盐或硝酸盐等氧化合物而不是从空气中获得氧;有的细菌通过转换铁化合物和硫来保持生命的延续,生存下来;有的细菌在沸水中滋生;有的细菌则在0℃以下的盐水中生存;有的细菌在不可思议的高压下存活。看上去,多数细菌的生命是永无止境的,某些细菌的孢子可以休眠几千年。<br /><br /> 它们生命的潜能与地球上其他生命的潜能完全或者几乎不同。正是这一不同,向我们暗示着生命的另一种可能,或许是生命在宇宙间其他星球上的另一种可能。<br /><br /> 生命的无数种可能<br /><br /> 既然地球细菌展现了如此丰富的生命形态,那么宇宙中的生命该有多少种可能性呢?地球上的生命都是由核酸和蛋白质组成的,但这是否是生命存在的惟一形式?可以有基于别的化学基础而发展起来的其他生命吗?<br /><br /> 这个问题无疑是对生物学家的一项重大挑战。因为地球上的“蛋白质生命”是以碳元素为基础的,一些科学家于是翻开元素周期表,看看哪一种元素的性质与碳最为相似———当然是同一族中的硅。硅基生命甚至可以不摄取有机物,而只从宇宙空间中吸收星光维持生命,他的身体是由多数光线粒子和少数物质粒子组成,物质粒子在必要时也可以转化成光线粒子。可以设想,既然我们这些以碳为基础的生物呼出的废气是二氧化碳,那么,火星上那些以硅为基础的生物,呼出的自应是硅和氧的化合物———二氧化硅。二氧化硅其实就是我们平时在沙滩上所见的沙,也就是说,这些火星生物在呼吸时所喷出的是沙粒!<br /><br /> 还有一些科幻作家留意到,元素周期表中的硫与同一族的氧在性质上有不少相似之处。那是否表示,在一些较高温的星球上(硫在地球上的室温时是固体),生物呼吸所需的氧气可以被硫所代替?<br /><br /> 此外,水是一切蛋白质生命所必需的溶液和介质。有没有一种其他化合物可以取代水的地位呢?有!那就是氨。由于氨在冰点以下仍是液体,一些科幻作家遂推想,在一些寒冷的巨型气态行星的表面下,可能存在着由氨组成的海洋,而海洋中则充满着以氨为介质的生命形式。<br /><br /> 以上都只是个别的、零星的构想,真正对问题作出全面性的考察和系统性的分析的,是著名生化学家阿西莫夫所写的一篇文章《并非我们所认识的》。他在文中提出了六种生命形态:<br /><br /> 一、以氟化硅酮为介质的氟化硅酮生物;<br /> 二、以硫为介质的氟化硫生物;<br /> 三、以水为介质的核酸/蛋白质(以氧为基础的)生物;<br /> 四、以氨为介质的核酸/蛋白质(以氮为基础的)生物;<br /> 五、以甲烷为介质的类脂化合物生物;<br /> 六、以氢为介质的类脂化合物生物。<br /><br /> 其中第三项便是我们所熟悉的———亦是我们惟一所认识的———生命。至于第一、第二项,是一些高温星球上可能存在的生命形式,另外,地球上曾经出现过的那些生活在硫矿里的、厌氧的古细菌就很有可能是以硫作为自己生命的介质;而第四项至第六项,则是一些寒冷星球上可能存在的生物形态。<br /><br /> 宇宙中的生命可能有着不同的化学基础,使我们认识到,生命对环境的适应能力各有不同———所谓“甲之熊掌,乙之砒霜”,我们认为舒适宜人的星球,对一些生物来说可能是酷热难耐,而对另一些则可能是寒冷难当。<br /><br /> 更不可思议的设想<br /><br /> 然而,科幻作家仍不满足于生命的这些多样性,他们在各自的作品中充分发挥了想像力,为我们创造出一些更不可思议、但细想之下又似乎不无道理的生命世界。一些作家设想,在某些极寒冷的星球之上,可能存在着以液体氦为基础,并以超导电流作联系的生命形式;另一些作家则认为,即使在寒冷而黑暗的太空深处,亦可能有一些由星际气体和尘埃组成,并由无线电波传递神经讯号的高等智能生物——霍耳的科幻小说正是这方面的代表作;还有一些想像力更丰富的作家甚至认为外星生命也许根本不需要化学物质基础,他们可能只是一些纯能量的生命形式,比如一束电波。<br /><br /> 最为有趣的是著名科幻作家福沃德所写的《龙蛋》,这部构思出色的作品描述了一颗中子星表面的生物。这颗中子星直径仅20公里,但表面的引力却等于地球上的670亿倍,磁场是地球的1万亿倍,表面温度达到8000多摄氏度。什么生物可以在这样的环境下生存呢?是由“简并核物质”组成的生物。所谓“简并”,就是指原子外部的电子都被挤压到原子核里去,因此所有原子都可以十分紧密地靠在一起,形成超密物质。中子星上的生物身高约半毫米,直径约半厘米,体重却有70公斤,这是因为他们由简并物质所组成。此外,他们的新陈代谢是基于核反应而非化学反应,因此一切变化(包括生老病死和思维)的速率都比人类快100万倍!<br /><br /> 让我们来看一看一个医学院毕业生在毕业典礼上所作的有趣的讲演:在我们星系的另一边的什么地方,有一个遥远的行星,离一个其等级和温度都正合适的恒星恰好不远不近。此时此刻,那上面有一个委员会正在开会,研究着我们这个小小的偏远的太阳系。会议进行了一年之久,现已接近尾声了。那地方的智慧生物们正在一份文件上签名(当然是用某种数字),文件断言,说在我们这地方,生命的事是不可思议的,而这地方也不值得来一趟远征。他们的种种仪器已经发现,这儿存在最最致命的气体、就是氧气,这样一来,什么戏都没了。<br /><br /> 这并非纯粹的胡思乱想,厌氧生物在地球上就存在。对它们来说,氧气不但不是必不可少的,反而是致命的“毒物”。对地球人类来说最重要的氧气尚且如此,我们还有什么理由认为,只有与地球环境相当的星球才能产生生命呢?<br /><br /> 今天,人类对外星生命的搜索虽然还是两手空空,一无所得,但我们仍应坚持不懈地探寻下去,至少,它大大拓展了我们对宇宙生物原理的认识。