当前位置:首页 » 软件设计 » 天线设计原理

天线设计原理

发布时间: 2021-02-22 13:02:19

① 天线的工作原理是什么

天线分类很多,你这个问题就比较模糊了,所有的天线都是通过电磁波的特性,对无线电专波的辐属射或接受的,天线的选材都是电阻较低的铝铜等金属,当电磁波通过这些金属时根据电磁波的变化产生微弱的电流,这些电流通过电子产品上的LC回路和放大设备就可以变为所需的信号电流,天线的种类一般按用途,形状划分,不同的天线又有不同的用途极其工作原理!

② 天线的原理是什么 为什么可以收到信号

天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。
当导体上通以高频电流时,在其周围空间会产生电场 与磁场。按电磁场在空间的分布特性,可分为近区,中间区, 远区。设R为空间一点距导体的距离,在

时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。


的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。
必须指出,当导线的长度 L 远小于波长 λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。
发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。如何使导体成为一个有效辐射体导系统呢?这里我们先分析一下传输线上的情况,在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。
如图TX,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。

③ 天线的原理是什么

天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。

当导体上通以高频电流时,在其周围空间会产生电场 与磁场。按电磁场在空间的分布特性,可分为近区,中间区, 远区。设R为空间一点距导体的距离,在的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。

必须指出,当导线的长度 L 远小于波长 λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。如何使导体成为一个有效辐射体导系统呢?这里我们先分析一下传输线上的情况,在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。



如图TX,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配

④ 天线的原理是怎样的天线的电路是怎样的原理是怎样的

天线就是一个存在电流流动的辐射体,这个辐射体可以是导线,像收音机的版天线,以前电视天线有V字型权的天线,我小的时候用八木天线的,理解天线是从平行板演变来的,平行板上面接正点,下面接负电,这样电场线就在垂直板内由正级指向负级,当把板子的一端开口张大时,电场线就会辐射出去,如果是交变电场,就会形成电磁波发射出去,这是最简单的偶极子天线的演变。输入信号幅度是指接收机的输入信号吗?一般来说有两种方法:一做成有源的天线就是调谐后加入放大器,再者就是加大天线尺寸,一般驻波天线的工作在谐振处效果才好,但是半导体用的都是电小天线,一般不能谐振,所以尺寸越大越接近谐振,电尺寸越大。

⑤ 自制天线的原理是什么通俗易懂些尽量,具体该怎样操作材料用的越少越好

要看做什来么天线。有摩克源森 和八木。先看你的接收机是多少频率,再根据你的频率算出天线阵子的长度。最后用铝管或是铜管,不锈钢管来做成天线。 铜管修电冰箱的地方都有卖,不锈钢管做防盗窗的都有卖。 计算方法网上有公式。自己算。
工具有落实刀,RF馈线,支架(钢水管)就OK了。

⑥ 天线的工作原理

当导体上通以高频电流时,在其周围空间会产生电场 与磁场。按电磁场在空间的分布特性,可分为近区,中间区, 远区。设R为空间一点距导体的距离,在 时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。
在 的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。
必须指出,当导线的长度 L 远小于波长 λ 时,辐射很

图2 天线
微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。
发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。如何使导体成为一个有效辐射体导系统呢?这里我们先分析一下传输线上的情况,在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。
如图TX,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。

⑦ 天线的原理与制作

作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名YAGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1'比H2滞后90°,也就是ε1'比ε1滞后360°,即反射器在主振子产生的感应电动势ε1'与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。同理可推导出,对天线后方某点来的信号,反射器在主振子产生的感应电动势与信号直接产生的感应电动势是反相的,起到了抵消输出的作用。而引向器B、C、D等都比主振子略短,阻抗呈容性,假定振子间距b、c、d也等于λ/4,按上述方法也可推出引向器对前方过来的信号起着增强天线输出的作用。综上所述,反射器能够有效消除天线方向图后瓣,并和引向器共同增强天线对前方信号的灵敏度,使天线具有了强方向性,提高了天线增益。对于发射状态,推导过程亦然。实际制作过程中,通过缜密设计和适当调整各振子的长度及其间距,就能获得工作在不同中心频点、具有一定带宽、一定阻抗值和较好端射方向图的八木天线。

对于设计调整一副天线,我们总希望它能够有较高的效率和增益,足够的带宽,以及较强的信号选择和抗干扰能力,同时与馈线阻抗尽量匹配,竭力降低驻波比和减小信号损耗。然而天线的各项几何参数对其电气性能都有影响,并且往往彼此矛盾、相互牵制,设计调整时不能顾此失彼,要结合实际的用途综合考虑,分清主次,必要时还得牺牲一些次要的性能指标。由于八木天线的增益与轴向长度(从反射器到最末引向器的距离)、单元数目、振子长度及间距密切相关,轴向越长,单元数实际也就是引向器越多,方向越尖锐,增益越高,作用距离越远,但超过四个引向器后,改善效果就不太明显了,而体积、重量、制作成本则大幅增加,对材料强度要求也更严格,同时导致工作频带更窄。一般情况下采用 6 ~ 12 单元就足够了,天线增益可达 10~15 dB,对于高增益的要求,可采用天线阵的办法加以解决。引向器的长度通常为(0.41~0.46)λ,单元数愈多,引向器的最佳长度也就愈短,如果要求工作频段较宽,引向器的长度也应取得短些。引向器的间距一般取(0.15~0.4)λ,大于0.4λ后天线增益将迅速下降,但第一引向器B和主振子的间距应略小于其它间距,例如取b≈0.1λ时,增益将会有所提高。

一般来说,反射器A的长度及与主振子的间距对天线增益影响不大,而对前后辐射比和输入阻抗却有较大的影响,反射器长度通常为(0.5~0.55)λ,与主振子的间距为(0.15~0.23)λ。反射器较长或间距较小可有效地抑制后向辐射,但输入阻抗较低,难于和馈线良好匹配,因而要采取折衷措施。对某些前后辐射比要求较高的使用场合,可以在与天线平面垂直方向上上下安装两个反射器,或者干脆采用反射网的形式。有时为了着重改善天线带宽的低频端特性,还会在主振子的后面不同距离处排列两个长度不等的反射器,其中较短的要离主振子近些。若想改善天线的高频端特性,可适当调短引向器的长度。多元八木天线中引向器的长度和间距可以相等也可不等,从而分成均匀结构和不均匀结构两种形式,不均匀结构的引向器,离主振子越远长度越短,间隔越大,使得工作频带向高频端方向拓展,调整起来相对灵活机动。天线增益越高,带宽也会越窄,有时为展宽频带,还可采用两个激励振子,称为双激,或者直接选用复合式引向天线。考虑到八木天线的各项电气指标在频带低端比较稳定,而高端变化较快,所以最初设计时频率通常要稍高于中心频率。另外振子所用金属管材越粗,其特性阻抗越低,天线带宽也就越大,振子直径通常为(1/100~1/150)λ,当然实际选择时还要考虑天线的整体机械特性。振子的粗细还会影响振子的实用最佳长度,这是因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都要在理论值上减去一个缩短系数,而导线越粗缩短系数越大,振子长度越小,对阻抗特性也造成一定影响。

输入阻抗是天线的一个重要特性指标,它主要由有源振子固有的自阻抗及与其邻近的几个无源振子间的互阻抗来决定的。远处的引向器,由于和主振子耦合较弱,互阻抗可忽略不计。通常主振子有半波对称振子和半波折合振子两种形式,单独谐振状态下,输入阻抗都为纯电阻,半波对称振子的Zin = 73.1 欧,标称 75 欧,半波折合振子的Zin = 292.4 欧,标称300欧,是半波对称振子的四倍。而加了引向器、反射器无源振子后,由于相互之间的电磁耦合,阻抗关系变得比较复杂,输入阻抗显著降低,并且八木天线各单元间距越小阻抗也越低。为了增大输入阻抗,提高天线效率,故主振子多选用半波折合振子的形式,这样也能同时增加天线的带宽。只要适当选择折合振子的长度,两导体的直径比及其间距,并结合调整反射器及附近几个引向振子的尺寸,就可以使输入阻抗变换到等于或接近馈线特性阻抗的数值。尤其值得一提的是,虽然无线电通信机天线端口及采用的同轴电缆特性阻抗都设计成50Ω,而广播电视接收和传输同轴电缆特性阻抗为75Ω,但是对于任一天线,人们总可以通过阻抗调试,在要求频率范围内,使天馈线良好匹配,获得满意的驻波比,所以实用中并不十分注意八木天线输入阻抗的具体数值,而主要以馈线上的驻波比为依据进行尺寸选择或试验调整。如果选用同轴电缆馈电,为保证天线的对称性及与馈线的阻抗匹配,就必须在馈线和天线接口处加入“平衡—不平衡”转换器,例如半波U型环式匹配器、变压器式匹配器等,否则高频信号在传输中衰减严重。因半波U型环式匹配器只需一段λ/2的同轴电缆,结构简单,应用广泛,具体接线方法如图2所示。

由于引向器阵列对增益、后向辐射、输入阻抗等都有影响,故实验调整是八木天线投入使用前必不可少的一个步骤。调试时注意一定要把天线架起来,离开地面高度两、三米以上,以免影响天线的阻抗和仰角。架设八木天线时,振子所在的天线平面既可以和大地平行又可以垂直,只要收、发双方的天线保持相同姿势就行,平行则辐射水平极化波,垂直则辐射垂直极化波,因有足够的隔离度,还可共杆架设两副相互垂直的引向天线,使用起来十分方便。为避免相位关系更加复杂化,降低调整难度,通常折合振子平面要与横梁垂直。因为各振子长度都约为半个波长,振子中点恰好位于电波感应信号电压的零点,所以振子的中点能用金属螺栓和铝质横梁直接固定,不必绝缘,这样还能方便地泄放感应静电。若主振子采用半波对称振子,与馈线相接的地方必须和横梁保持良好绝缘,若采用半波折合振子,中点仍与横梁相通。金属横梁与端射方向上的电场极化方向垂直,因此对天线辐射场不会产生显著的影响。另外需要注意的是,由于天线一般架设在楼顶、阳台等室外环境,受风吹日晒雨淋后接口容易氧化生锈,影响信号的传输和天线的匹配,使收发效果变差,需用防水胶带提前处理,同时还应注意防雷。

虽然说八木天线结构并不复杂,但是若想做好做精也不是一件轻而易举的事,如果自行设计没有足够的把握,可以完全仿照工程理论书籍给出的尺寸,或者借助于一些现成的设计软件,如国外的yagi(下载地址 http://www.ve3sqb.com/)等,只需直接输入频率、单元数和振子直径,就能得到各个单元的最佳尺寸和位置,如图3所示,确保你也能制造出一副优秀的YAGI。理论归理论,只有实践才能出真知,怎么样,还不抓紧动手试一试!
八木天线分配器(双排定向天线制作)

许多人在成功的制作完定向天线後, 其野心也越来越大, 因为既然一个阵列的定向天线已经成功, 何不做做双排的定向天线呢? 没错! 我们就是要本著一颗庞大的野心, 朝著想要达到的目标前进, 这样我们的技术才会提升, 这也是业馀无线电玩家的精神.

只要你完成了前一个单元的实验144MHZ 九节八木天线, 那你要制作一个双排定向天线, 绝不是一件难事. 只要你有了分配器, 想要做几排定向天线都没问题.

两排定向天线合并, 中间一定要有一个分配器, 而两排定向天线的距离大约是天线本身主杆的80%~90%长, 而且分配器两端75欧姆的同轴电缆线要等长.
注意事项:

分配器两端的长度最好是奇数个电子上的四分之一波长, 当你算出物理上的四分之一波长天线长度(也就是第一单元所讲的四分之一波长的算法), 还要用此长度算出电子上的四分之一波长的长度, 来运用在75欧姆同轴电缆线的长度.

例如:天线频率144MHZ, 它的四分之一波长为 0.5 公尺(物理上的), 而我使用的75欧姆同轴电缆线规格为 RG-59, 而RG-59的速率因素为 0.66 (75欧姆同轴电缆线规格有很多种,其速率因素也不同, 请参考出厂规格说明), 所以我还要将刚刚算出的 0.5 公尺再乘上 0.66 , 所以求出在电子上的四分之一波长的长度为0.33公尺. 假设我所需要的电缆线从天线的供电点到T型接头的长度为1.98公尺, 这个长度刚好是6个电子的四分之一波长, 是个偶数, 而我们不要偶数倍, 我们要奇数倍, 所以我们把长度加到2.3公尺(这个长度是7个电子的四分之一波长), 让它成为奇数倍, 这样的效率才是最好的.

⑧ 天线接收信号的原理

接收信号的原理:

电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。

这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。

电磁波的接收率又和这个振荡电路本身的频率有关。

如果两个频率相同,达到“共振”,就会很强。 想吸收可见光,那要纳米级的天线,还要光频的震荡电路,这都是不可能的。所以我们不能用天线接收无线电波的方法接收光波。

天线的吸收率很明显比较低,一般来讲,比太阳能电池板低很多。

(8)天线设计原理扩展阅读:

移动通信常用的基站天线、直放站天线与室内天线。

1、板状天线

无论是GSM 还是CDMA, 板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能 可靠以及使用寿命长。

板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。

2、天线指标

频率范围: 824-960 MHz

频带宽度: 70MHz

增益: 14 ~ 17 dBi

极化: 垂直

标称阻抗: 50 Ohm

电压驻波比≤ 1.4

前后比 >25dB

3、板状天线

(1)采用多个半波振子排成一个垂直放置的直线阵

(2)在直线阵的一侧加一块反射板 (以带反射板的二半波振子垂直阵为例)

增益为 G = 11 ~ 14 dBi

(3)为提高板状天线的增益,还可以进一步采用八个半波振子排阵

前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dBi;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 ~ 17 dBi。

一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16 ~ 19 dBi。 不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达 2.4 m 左右。

4、 高增益栅状

从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。

抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。

抛物面天线一般都能给出 不低于 30 dB 的前后比 ,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。

5、 八木定向天线

八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。

八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。

6、 室内吸顶天线

室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。

现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的构造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试。

所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为G = 2 dBi。

7、 环形天线

环形天线和人体非常相似, 有普通的单极或多级 [1] 天线功能。再加上小型环形天线的体积小、高可靠性和低成本,使其成为微小型通信产品的理想天线。典型的环形天线由电路板上的铜走线组成的电回路构成,也可能是一段制作成环形的导线。其等效电路相当于两个串连电阻与一个电感的串连( 如图1 所示) 。Rrad 是环形天线实际发射能量的电阻模型,它消耗的功率就是电路的发射功率。

假设流过天线回路的电流为I,那么Rrad 的消耗功率,即RF 功率为Pradiate=I2·Rrad。电阻Rloss 是环形天线因发热而消耗能量的电阻模型,它消耗的功率是一种不可避免的能量损耗,其大小为Ploss=I2·Rloss。

如果Rloss>Rrad,那么损耗的功率比实际发射的功率大,因此这个天线是低效的。天线消耗的功率就是发射功率和损耗功率之和。实际上,环形天线的设计几乎无法控制Ploss 和Prad,因为Ploss 是由制作天线的导体的导电能力和导线的大小决定的,而Prad 是由天线所围成的面积大小决定的。

8、 室内壁挂天线

室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。

现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。

参考资料:网络-天线

⑨ 天线的制造原理

天线本身就是一个振荡器,但又与普通的LC振荡回路不同,它是普通振荡回路的变形。 图中LC是发信机的振荡回路。 电场集中在电容器的两个极板之中,而磁场则分布在电感线圈的有限空间里,电磁波显然不能向广阔空间辐射。如果将振荡电路展开,使电磁场分布于空间很大的范围, 这就创造了有利于辐射的条件;于是,来自发信机的、已调制的高频信号电流由馈线送到天线上,并经天线把高频电流能量转变为相应的电磁波能量,向空间辐射 电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。若在交变电磁场中放置一导线,由于磁力线切割导线,就在导线两端激励一定的交变电压——电动势,其频率与发信频率相同。若将该导线通过馈线与收信机相连,在收信机中就可以获得已调波信号的电流。因此,这个导线就起了接收电磁波能量并转变为高频信号电流能量的作用,所以称此导线为收信天线。无论是发信天线还是收信天线,它们都属于能量变换器,“可逆性”是一般能量变换器的特性。同样一副天线,它既可作为发信天线使用,也可作为收信天线使用,通信设备一般都是收、发共同用一根天线。因此,同一根天线既关系到发信系统的有效能量输出,又直接影响着收信系统的性能。
天线的可逆性不仅表现在发信天线可以用作收信天线,收信天线可以用作发信天线,并且表现在天线用作发信天线时的参数,与用作收信天线时的参数保持不变,这就是天线的互易原理。
为便于讨论,常将天线作为发信天线来分析,所得结论同样适用于该天线用作收信天线的情况。

⑩ 天线的工作原理是什么

天线实际上是一种特殊的结构形式,这种结构可以响应空间中特定某种波长的电磁波,并形成感应电流,传递给接收机。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837