网壳结构设计
❶ 在建筑结构中,网架和网壳有什么不同
网架和网壳的不同:
1、定义不同。网格结构是由很多杆件通过节点,按照规律的几何图形组成的空间结构。网格结构中,双层或多层平板形网格结构称为网架结构,而曲面形网格称为网壳结构。
2、网壳较网架有突出的美感。网壳具有优美的建筑造型,无论是建筑平面、外形和形体都能给设计师以充分的创作自由。可以有各种平面形式和曲面形式,甚至可以通过曲面的切割和组合得到。既能表现静态美,又能通过平面和立面的切割以及网格、支撑与杆件的变化表现动态美。
3、可变荷载的取值有所不同。网架的屋面,一般不上人,屋面活荷载标准值为0.5kN/m2,而网壳按荷载规范一般取0.3kN/m2.。由于网架和网壳的外形不同,自然导致风荷载体型系数不同,使风荷载产生差异。
4、屋面排水方式不同。由于网壳结构呈曲面形状,形成了自然排水功能,而网架排水主要采用以下几种方式。(1)整个网架起拱,这种做法抗震性能好。
(2)网架变高度,这种做法导致上弦杆和腹杆种类增多,给网架制作带来一定困难,但提高了网架的抗震性能。(3)上弦节点上加小立柱,但需对小立柱进行抗震和稳定的验算。
5、杆件的计算长度和容许长细比有所不同,计算长度的差异主要在其他腹杆的计算长度上,可查阅相关规范。对于压杆限制长细比的目的是防止过于细长易产生初弯曲,大大降低杆件承载力;对于拉杆限制长细比的母的是为了保证杆件在制作、运输、安装和使用过程中有一定刚度;对于直接承受动力荷载杆件则要求具有更大刚度,具体数值可查规范。
6、不同的内力性质。单层网壳结构的杆件需做成刚接,能够传递弯矩,而网架基本为铰接。平板网架对支座无水平推力或是拉力,而网壳一般不同,网壳需要较大的边缘构件来约束它。
7、抗震分析有所不同。网架:在设防烈度为8 度的地区,网架结构可不进行水平抗震计算,但必须进行竖向抗震计算。在设防烈度为9 度地区必须进行网架结构水平与竖向抗震计算。网壳:在设防烈度为7 度的地区,网壳结构可不进行竖向抗震计算,但必须进行水平抗震计算。在设防烈度为8 度、9 度地区必须进行网壳结构水平与竖向抗震计算。
❷ 如何以最快的速度学习网壳结构
网壳结构主要应对使用阶段的外荷载(包括竖向和水平向)进行内力和位内移计算,对单层网壳通容常要进行稳定性计算,并据此进行杆件设计。此外,对地震、温度变化、支座沉降及施工安装荷载,应根据具体情况进行内力、位移计算。
❸ 网壳结构的设计要查阅哪些规范
最主要的是《空间网格结构技术规程》,这是11年的新规范
❹ 由福斯特设计的大英博物馆大中庭玻璃屋顶是怎么建造的,或者讲类似于这一类的网壳结构在实际施工如何建造
建造师(Constructor)是指从事建设工程项目总承包和施工管理关键岗位的执业注册人内员,建造师执业资格制度起源容于1834年的西方资本主义国家英国。建造师的含义是指懂管理、懂技术、懂经济、懂法规,综合素质较高的综合型人员,既要有理论水平,也要有丰富的实践经验和较强的组织能力
❺ 《网架,网壳结构设计实例与解析》杜文风,电力出版社。有人买过这本书么里面例子是用ANSYS分析的吗
是用ANSYS分析的,看介绍感觉看完这本书就能学会设计,实际不能,感觉上当了。每个例子都是大概说下步骤,不是太详细,还不如看网架设计手册
❻ 网壳结构的特点
网壳结构的发展和大量的工程实践应用,网壳结构为建筑结果提供了一种新颖合理的结构形式,这主要是网壳结构具有以下优点:
(1)网壳结构兼有杆件结构和薄壳结构的主要特性,受力合理,可以跨越较大的跨度。网壳结构是典型的空间结构,合理的曲面可以使结构力流均匀,结构具有较大的刚度,结构变形小,稳定性高,节省材料。
(2)具有优美的建筑造型,无论是建筑平面、外形和形状都能给设计师以充分的创作自由。薄壳结构与网格结构不能实现的形态,网壳结构几乎都可以实现。既能表现静态美,又能通过平面和立面的切割以及网格、支撑与杆件的变化表现动态美。
(3)应用范围广,既可以用于中、小跨度的民用和工业建筑,也可用于大跨度的各种建筑,特别是超大跨度的建筑。在建筑平面上可以适应多种形状,如圆形、矩形、多边形、扇形以及各种不规则的平面。在建筑外形上可以形成多种曲面。
(4)可以用小的构件组成很大的空间,而且杆件单一,这些构件可以在工厂预制实现工业化生产,安装简便快速,适应采用各种条件下的施工工艺,不需要大型设备,因此综合经济指标较好。
(5 )计算方便。目前我国已有许多适用于多种计算机类型的各种语言的计算软件,为网壳结构的计算、设计和应用创造买有利条件。
(6 )由于网壳结构呈曲面形状,形成了自然排水功能,不需像网架结构那样采用小立柱找坡。
❼ 如何在3d3s中给网壳结构加入初始缺陷
钢结构设计3d建模操作顺序
一 、选择材料库,即构件截面和配件库,包括钢管截面库、球库、锥头库、封板库、螺栓库等;
二 、使用结构编辑中的新建网架网壳菜单,快速生成网架模型(如图一) ;生成的模型的高度方向为世界坐标系的z方向;
三 、利用 ACAD 的命令和 3D3S 提供的起坡、移动节点到直线、曲线、圆弧等命令,对网架进行编辑,形成异型模型 ;
四 、使用结构编辑—添加杆件菜单,在已有模型基础上添加其它构件,比如添加柱;在直接画杆件前双击列表中的截面名称,柱截面定义为矩形截面;构件全部添加完成后使用“删除重复单元节点”命令;
五 、使用构件属性-支座边界菜单,定义网架下弦周边点为铰接支座(X、Y、Z 约束) ,柱底节点刚接(X、Y、Z、绕x、绕y、绕z约束);
六 、转换到 XZ 视图,使用部分显示命令,显示上弦平面所有杆件(如图五) ;
七 、使用荷载-添加杆件导荷载命令,双击输入恒载面荷载(工况 0) 、活载面荷载(工况 1) ,选择双向导到节点;选择受荷范围按钮,在屏幕中选择当前显示的上弦平面的所有杆件后,关闭退出;
八 、荷载—生成封闭面,在封闭面已生成后按继续执行自动导荷载;使用显示查询-按工况号显示导荷载菜单, 在屏幕中可以显示出面荷载作用的所有封闭面, 可以使用 ACAD 的 SHADE 命令来进行消隐观察(如图六) ;点击取消附加信息显示和全部显示开关,恢复整体模型的显示;
九 、使用显示查询-按显示节点荷载菜单,在屏幕中可以显示出最终作用的所有节点荷载;
十 、结构编辑—结构体系菜单,把默认的空间桁架修改为空间框架,使用构件属性-单元释放菜单,把网架部分的所有构件绕 2、3 轴转动释放;
十一 、使用构件属性—选择柱构件,把材性设定为混凝土 C30;
十二 、地震荷载输入:荷载—地震荷载参数,选择七度区;
十 三 、分析内容选择和计算,选中地震计算和线性分析,确定后进行地震荷载计算和结构线性内力计算:
十 四 、选择规范,选择所有网架构件为网架规范,设计验算中选中所有网架构件,使用构件优选;
十 五 、节点设计—焊接球设计,选择网架部分的所有节点进行焊接球设计;
十 六 、施工图—网架三维实体图,显示已经设计完成的网架和焊接球;
十 七 、施工图—进行球节点详图、网架布置图和材料表绘制。
❽ 网壳结构的一般计算原则
网壳结构主要应对使用阶段的外荷载(包括竖向和水平向)进行内力和位移计算,对单层网壳通常要进行稳定性计算,并据此进行杆件设计。此外,对地震、温度变化、支座沉降及施工安装荷载,应根据具体情况进行内力、位移计算。 网壳结构的内力和位移可按弹性阶段进行计算。网壳结构根据网壳类型、节点构造,设计阶段可分别选用不同的方法进行内力、位移计算:
l )双层网壳宜采用空间杆系有限元法进行计算;
2 )单层网壳宜采用空间梁系有限元法进行计算;
3 )对单、双层网壳在进行方案选择和初步设计时可采用拟壳分析法进行估算。
网壳结构的外荷载可按静力等效的原则将节点所辖区域内的荷载集中作用在该节点上。分析双层网壳时可假定节点为铰接,杆件只承受轴向力;分析单层网壳时假定节点为刚接,杆件除承受轴向力外,还承受弯矩、剪力等。当杆件上作用有局部荷载时,必须另行考虑局部弯曲内力的影响。对于单个球面网壳、圆柱面网壳和双曲抛物面网壳的风载体型系数,可按《建筑结构荷载规范》(GB 50009 一2001 ) 取值;对于多个连接的球面网壳、圆柱面网壳和双曲抛物面网壳,以及各种复杂体形的网壳结构,应根据模型风洞试验确定风载体型系数。 网壳的稳定性可按考虑几何非线性的有限元分析方法(荷载认一位移全过程分析)进行计算,分析中可假定材料保持为线弹性。用非线性理论分析网壳稳定性时,一般采用空间杆系非线性有限元法,关键是临界荷载的确定。单层网壳宜采用空间梁系有限元法进行计算。
球面网壳的全过程分析可按满跨均布荷载进行,圆柱面网壳和椭圆抛物面网壳宜补充考虑半跨活荷载分布。进行网壳全过程分析时应考虑初始曲面形状的安装偏差影响;可采用结构的最低屈曲模态作为初始缺陷分布模态,其最大计算值可按网壳跨度的1 /300 取值。
进行网壳结构全过程分析求得的第一个临界点处的荷载值,可作为该网壳的极限承载力。将极限承载力除以系数K 后,即为按网壳稳定性确定的容许承载力(标准值)。 在设防烈度为7 度的地区,网壳结构可不进行竖向抗震计算,但必须进行水平抗震计算。在设防烈度为8 度、9 度地区必须进行网壳结构水平与竖向抗震计算。
❾ 于家堡站的首创网壳结构体系
于家堡站地面站房经过国际招标,确定了采用“贝壳”建筑设计方案,其灵感来源于鹦鹉螺和向日葵的螺旋线,从圆形双向螺旋网格拉伸出初始平面形态,通过数值“悬挂”形成初始形体,再反转得到贝壳形壳体,最后经与建筑结合,对平面尺寸、高度进行调整,最终形成通透、开敞、明亮、新颖的建筑空间,达到了结构与建筑的完美统一。
于家堡网壳结构体系的创新主要包括网壳网格形式的创新和国内外罕见的跨度。“网壳由36根顺时针方向和36根逆时针方向的螺旋形箱梁杆件相互编织,在顶部交织成36个点与顶部钢环梁连接。在底部也交织成36个钢节点与底部钢环梁连接,这样一个顶环梁+编织网+底环梁的单层编织网通过支座与地下结构顶板连接;形成纵向跨度143米、横向跨度80米、矢高24米的贝壳形单层网壳结构。”马瑾说,其复杂优美的网格形式在国内大跨钢结构领域属于首创。同时,将支座设计成双球铰钢支座,也属国内网壳结构的首例。
基坑最深处为31米
于家堡站基坑超大超深,总面积为13万平方米,最深处为31米,基坑形状不规则、深度不等,对基坑开挖工序组织、质量安全控制提出了极高要求。
“工程采用了许多大胆的创新举措,如围护结构采用刚度好、止水效果好的地下连续墙,且墙深达64米。”据介绍,城际车站站台范围不设中间立柱,结构横向跨度20.5米,为超大跨度地下结构。设计中还采用了型钢混凝土框架梁及三联拱结构,满足了大跨度结构安全及建筑净空要求。
最大换乘距离不超200米
乘客可从地面设置的东、西、南三个方向的入口进入于家堡站。位于地下东南侧和西南侧的出口实现了同于家堡地下空间的联通,乘客出站后可由此直接进入地下商业街,地下10号出口同南侧的5万平方米高层相连,乘客也可从地下直接出入于家堡高铁站。
“国铁、地铁、出租车、公交车、社会车辆的乘客都可以在地下一层实现零换乘,最大的换乘距离不会超过200米。”据介绍,预留地铁主要分布在地下二层和地下三层,乘客可直接由地下二层和地下三层进入地下一层的公共大厅,买票后进入候车厅进站上车。火车换乘地铁则通过位于北侧和南侧的通道直接进入到地下一层的换乘大厅,买票后进入地铁付费区,然后下到地下二层、地下三层乘坐地铁。出租车的落客在地面,乘客可通过地面的入口进入车站。火车换乘出租车可从出站口进入候车站台,直接乘出租车离开。
❿ 结构中有个网壳结构··求正确答案
嗨,你好!
网壳是网架的曲面表现形式。网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。
( l )强度、刚度分析
网壳结构的内力和位移可按弹性阶段进行计算。网壳结构根据网壳类型、节点构造,设计阶段可分别选用不同的方法进行内力、位移计算:
l )双层网壳宜采用空间杆系有限元法进行计算;
2 )单层网壳宜采用空间梁系有限元法进行计算;
3 )对单、双层网壳在进行方案选择和初步设计时可采用拟壳分析法进行估算。
网壳结构的外荷载可按静力等效的原则将节点所辖区域内的荷载集中作用在该节点上。分析双层网壳时可假定节点为铰接,杆件只承受轴向力;分析单层网壳时假定节点为刚接,杆件除承受轴向力外,还承受弯矩、剪力等。当杆件上作用有局部荷载时,必须另行考虑局部弯曲内力的影响。对于单个球面网壳、圆柱面网壳和双曲抛物面网壳的风载体型系数,可按《建筑结构荷载规范》(GB 50009 一2001 ) 取值;对于多个连接的球面网壳、圆柱面网壳和双曲抛物面网壳,以及各种复杂体形的网壳结构,应根据模型风洞试验确定风载体型系数。
( 2 )稳定性分析
网壳的稳定性可按考虑几何非线性的有限元分析方法(荷载认一位移全过程分析)进行计算,分析中可假定材料保持为线弹性。用非线性理论分析网壳稳定性时,一般采用空间杆系非线性有限元法,关键是临界荷载的确定。单层网壳宜采用空间梁系有限元法进行计算。
球面网壳的全过程分析可按满跨均布荷载进行,圆柱面网壳和椭圆抛物面网壳宜补充考虑半跨活荷载分布。进行网壳全过程分析时应考虑初始曲面形状的安装偏差影响;可采用结构的最低屈曲模态作为初始缺陷分布模态,其最大计算值可按网壳跨度的1 /300 取值。
进行网壳结构全过程分析求得的第一个临界点处的荷载值,可作为该网壳的极限承载力。将极限承载力除以系数K 后,即为按网壳稳定性确定的容许承载力(标准值)。
( 3 )抗震分析
在设防烈度为7 度的地区,网壳结构可不进行竖向抗震计算,但必须进行水平抗震计算。在设防烈度为8 度、9 度地区必须进行网壳结构水平与竖向抗震计算。
摘录 网络