电感的设计
1. 电感设计中 有哪些常见问题
电感设计中 有哪些常见问题
电感器的频率特性主要由三个因素影响:
A、磁芯材料损耗的影响是最主要的,它导致Q值从最大值后呈现负斜率。
B、介电损耗也是影响的因素,特别是在高频段尤为明显。
C、第三个影响因素是分布电容和电感的自谐振效应。
自谐振频率对电感器的性能起到负面影响,自谐振频率是由分布电容和自感所决定,而分布电容是由绕线方法所决定的。尽量减少分布电容是绕线设计中非常重要的考虑目标。对于环型磁粉芯的绕线,它的有效电容是与电感并联的,这个分布电容是线与线之间,层与层之间和绕线本身与磁粉芯之间的电容之和。
好的绕线设计技术就是要尽量缩小圈数之间的电压,力求尽量减少分布电容,比如将绕线划分成几组,或者使用绕线排更可以有效较少电容量。在绕线和内部分段连接技术中,应尽量避免使输入端与输出端靠的太近,因为在着两个部分具有圈与圈间最大的势能,并因此而分布最大的有效电容值。同时,湿度指标和灌封与封装材料的绝缘常数也会提高分布电容值。
对于精密绕线磁芯,要求时间稳定性高和温度重复性好。所以在其温度周期内,必须让绕线应力得到释放。在磁粉芯是绕制完的线圈必须要做尽量多的从室到125℃的温度循环,这个温度循环不仅仅是为了释放应力,而且还有去除湿度的作用,当完成温度循环后,必须要对电感器进行电感量的最后调整。
绕线后磁芯必须保持干燥,尽快浸封,灌封或密封起来,应仔细选择灌封化合物材料,以避免有些材料随时间和温度收缩,而影响稳定性。在绕线后磁芯外面加上一些垫衬材料可以改善这种影响。
对于设计工程师而言,了解热老化引起磁芯损耗增加条件是十分重要。在高频条件下,涡流损耗是主要损耗,而低频下,磁泄损耗则是主要损耗。而各种损耗形式在总损耗中所占比例也会受到磁通密度的影响。受到高温热老化影响的是磁芯损耗的涡流部分。
在铁氧体磁芯内采用开气隙的方式,可降低磁芯的有效磁导率,从而降低工作的磁通密度,但这种气隙可以造成严重的局部化气隙损耗问题,当频率高于100KHz时,尤其显著,在很多的例子里,气隙损耗都会超过磁芯损耗,由于磁粉芯的气隙是均匀分布的,所以这类局部化气隙损耗基本上是不存在的。
如果选用任何不适当的磁芯材料或小于指定尺寸的磁芯,磁芯会因为进行过高频率的磁芯损耗而产生温升,从而更可能导致热衰败。
在选择适合的磁粉芯材料前,比寻确定电感器摆动的重要性,选取原则是保证磁粉芯不被磁饱和为前提。
判断磁粉芯温度的"过热点"的最佳方法是在磁芯打一个小的盲孔,并插入温差电偶丝,要求电偶丝与磁芯紧密接触才能得到精确结果,必须严密注意通风死角的温度情况,因为这些死角处的温度比冷风通道处的温度要高。建议单元组件在最恶劣条件下运行4-8小时,或运行导电感器达到热平衡为止。这样才能获得真正的磁粉芯的最高温度。要注意磁粉芯有不同的导热系数,会形成温度分级情况。
磁粉芯的原料磁粉有磁力格化现象,即是说当磁粉被磁化时,它们尺寸会发生轻微的变化,此情况在可听频率>20KHz以上应用中无关紧要,但在某些50Hz的用途中,磁芯会有蜂鸣噪音出现,这种情况在E形磁芯比在环形磁芯更明显,也会随着交流磁通密度的变化而改变。
2. 滤波电感的滤波电感的设计
在全桥逆变器中,输出滤波电感是一个关键性的元件,并网系要要求在逆变器的输出侧实现功率因数为1,波形为正弦波,输出电流与网压频率相同。因而,电感值选取的合适与否直接影响电路的工作性能。对电感值的选取,可以从以下两个方面来考虑:
①
电流的波纹系数
输出滤波电感的值直接影响着输出纹波的大小,由电感的基本伏安关系可得:
(5-14)
其中电感两端电压,考虑到当输出电压处于峰值附近,即时,输出电流波纹最大,设此时开关周期为T,占空比为D,则有下式:
(5-15)
另外,根据电感的伏秒平衡原理,我们可以得到,
(5-16)
于是求得,
(5-17)
从(5-15)、(5-16)式可得,
(5-18)
在本系统中,开关管的工作频率取电流波纹系数则由式(5-18)计算可:
因此,要保证实际电流纹则滤波器电感满足。
②从逆变器的矢量三角形关系可知,
(5-19)
于是,它们的基波幅值满足下式
(5-20)
由正弦脉宽调制理论可知,
(5-21)
其中,为调制比,且从而:
(5-22)
于是,我们可以得到下式:
综上,滤波电感的取值范围为。在实际设计过程中,由于电感的体积、成本等因素的影响,一般只需考虑电感的下限值,即取稍大于下下至即可。另外需要特别指出的是,以上的计算是建立在额定输出电压,即的基础上,考虑到实际情况下网压的波动范围,在设计电感时最终选取电感值,电感的额定电流为。
1.输入电容的设计
假设电网电压和电网的电流只含有基波分量并且相同,则注入到电网的瞬时功率为:
(5-24)
其中是注入电网的平均功率,是角频率,是时间。
因此,中间直流侧电压有小的脉动,同时由前述的Boost的光伏阵列的输出电流是在直流之上叠加了一个高频分量。同时雷击等尖峰电压和一些额外的因素引起的波动会对逆变器造成影响。因此有必要设置输入电容,使其与光伏阵列与逆变器之间的导线上的分布电感组成一个低通滤波,使各部分产生的干扰尽量不影响另一部分。
由经验值可得:输入电容的值一般取。
考虑到耐压,我们选取2个的电解电容进行串联。由于电容的串联涉及到均压的问题,采用并联均压电阻的措施。采用每组并联的电容上并联一个电阻,由三个电阻串联组成。
5.3.3功率因数(PF)
当逆变器的输出大于其额定输出的20%,平均功率因数应不小于0.85(超前或滞后),当逆变器的输出大于其额定输出的50%,平均功率因数不应小于0.95(超前或滞后)。
一段时期内的平均功率因数(PF)公式:
………………………………………(5)
式中:
——有功功率;
———无功功率。
注1:在供电机构许可下,特殊设计以提供无功功率补偿的逆变器可超出此限制工作;
注2:用于并网运行而设计的大多数逆变器功率因数接近1。
5.3.5工作频率
逆变器并网时应与电网同步运行。逆变器交流输出端频率的允许偏差为电网额定频率为。
5.3.6直流分量
并网运行时,逆变器向电网馈送的直流电流分量应不超过其输出电流额定值的0.5%或5mA,应取二者中较大值。
5.4.2发射要求
在居住、商业和轻工业环境中正常工作的逆变器的电磁发射应不超过GB 17799.3规定的发射限制;
连接到工业电网和在工业环境中正常工作的逆变器的电磁发射不应超过GB 17799.3规定的发射限制。
2.3太阳电池阵列输出功率数学模型
本文采用TRW太阳电池阵列输出功率数学模型[3,4]。任意太阳辐射强度和环境温度条件下,太阳电池温度
为
(21)
设在参考条件下,为短路电流;为开路电压;、为最大功率点电流和电压,则当光伏阵列电压为,其对应点电流为:
(22)
(23)
(24)
考虑太阳辐射变化和温度的影响时,
(25)
(26)
(27)
(28)
其中,、分别为太阳辐射和光电池温度参考值,一般分别取为和; 为在参考日照下的电流变化温度系数(); 为在参考日照下的电压变化温度系数();为光伏阵列的串联电阻。
2.4逆变器输出功率数学模型
逆变器输出功率为
(29)
其中,为输出功率;为输入功率;为无载功率;为额定输出功率;为常数,表明输入与输出间的关系,由下式决定
(30)
其中,为逆变器的效率。
3. 请问做电感设计方面的工作经验以后可以适用哪些工作
电感看上去简单,实际不然。要考虑磁芯的饱和,导线的线径,电感的温升等等。做好了不容易。估计你也坚持不了多久。好像只有小日本才会花很大精力把一件事做的尽善尽美。国人太浮躁,静不下心去做好。
4. 电感设计
你算一下呀,有公式的,500W,电流是不是差不多1A,我做的也是450W,用的6股0.41的线,18匝,你要计算一下,主要是买个测量电感的表,因为有空隙,中间垫张纸比较好,不过计算出来的都不是非常准确。
5. 电感的设计使用寿命怎么计算
电感设计
原则一:电感不饱和(感值下降不超出合理范围)
由磁滞回线图可以看出, H 加大时, B 值也同时增加,但 H 加大到一定程度后, B 值的增加就变得越来越缓慢,直至 B 值不再变化 (u 值越来越小,直至为零 ) ,这时磁性材料便饱和了。通常电路中使用的电感都不希望电感饱和(特殊应用除外,参看饱和电感及其在开关电源中的应用一文),其工作曲线应在饱和曲线以内, Hdc 称为直流磁场强度或直流工作点。
6. 电感器的设计方法
你真的小学吗...
7. 如何设计电感
电感设计,关键要看你的需求,先有需求的感值、电流等,才能下手设计!
8. 如何学习电感和变压器的设计
学习电感和变压器的原理、结构、材料、制作工艺及相关设备要求;内
掌握电感和变压器容的设计计算方法和技术规范;
了解电感和变压器产品的技术标准和技术要求;
掌握实现产品技术要求的原理和方法。
以上几言虽简,涵盖知识宽泛。一条主线:原理-标准-方法。
9. 徐武安 电感设计与计算pdf下载
书名=电感器件设计与计算
作者=徐武安编著
页码=208
ISBN=15298·69
出版社=成都:四川科学技术出版社 , 1985.08
附件已经上传
10. 要设计一定电感值的电感依据什么公式
LI=NBS,这个就ok了