电子钟的设计
『壹』 电子时钟的设计
不同种类的 单片机 访问储存器的 方式和 地址也不一样的!先确定软件版的结构 然后权选择硬件 再写程序
汇编很麻烦,问问老师能不能用C ,如果老师没有规定硬件 那么应该是 硬件越简单 越便宜越好
解决方案:1.网络上有许多单片机写电子钟的文章,可以从中一份
2.自己假定一套硬件然后对其编写,并且画出电路图做成仿真
3.直接做成实物上交(电子钟实物材料打死20RMB拿下)
『贰』 电子时钟设计
为什么不自己动手编一个,这是很好的学习机会,用别人的会很麻烦,因为别人的硬件专跟你不属一定相同,即使一次性成功了,那又能学到啥?
你小子也忒抠门了吧,一分不给,就让人家把自己辛勤劳动的成果拱手相让。
『叁』 数字电子钟的设计
不多说,看图『肆』 数字电子时钟的设计
设计原理
计数时钟由模为60的秒计数器模块、模为60的分计数模块、模为24的小时计数器模块、指示灯与报警器的模块、分/小时设定模块及输出显示模块等组成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块的进位输出为小时计数器模块的进位输入。其中秒计数器模块中应有分钟的设定,分计数器模块中应有小时的设定。
内容
设计一个计数时钟,使其具有24小时计数功能。通过“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意引线插孔可设置小时和分钟的值,并具有整点报时的功能。
电路原理图
模块说明:计数时钟由60秒计数器模块XSECOND、60分计数器模块XMINUTE、24小时计数器模块XHOUR等六个模块构成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块中有小时的设定。通过SW1、SW2、SW3、SW4可设定小时和分钟的值,并具有整点报时的功能。
输入信号:SETMIN为分钟设置信号;SETHOUR为小时设置信号;RESET为全局复位信号;CLK为全局时钟信号;CKDSP为数码管动态扫描信号。
输出信号:SPEAK为蜂鸣器报时信号;LAMP[2..0]为指示灯信号;A~G为数码管七个段位信号;SS[2..0]为数码管段位译码控制信号。
说明与电路连线
指示灯信号LAMP2~LAMP0为独立扩展下载板上CPLD器件的第11、10、9脚,内部已连接并已锁定,无需外接连线。
蜂鸣器报时信号SPEAK为独立扩展下载板CPLD器件的第31脚,内部已连接并已锁定,无需外接连线。
拨码开关SW1~SW7内部已连接并已锁定,无需外接连线。
数码管七个段位信号A~G为独立扩展下载板上CPLD器件的第86、87、88、89、90、92、93脚,应接数码管段位引线接线组KPL_AH,从左到右依次对应的A、B、C、D、E、F、G引线插孔。
数码管段位译码控制信号SS0、SS1、SS2为独立扩展下载板上CPLD器件的第68、69、70脚,为数码管的位选扫描信号,分别接信号接线组DS1-8A(T)的SS0、SS1、SS2引线插孔(即在电源引线插孔组GND孔处)。
复位信号RESET为独立扩展下载板上CPLD器件的第71脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
小时设置信号SETHOUR为独立扩展下载板CPLD器件的第73脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
分钟设置信号SETMIN为独立扩展下载板上CPLD器件的第74脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
时钟信号CLK为独立扩展下载板上CPLD器件的183脚(即GCLK2),应接时钟信号接线组“CLOCK(T)”的“FRQ(21)”引线插孔。
数码管动态扫描信号CKDSP为独立扩展下载板上CPLD器件的79脚(即GCLK1),应接时钟信号接线组“CLOCK(T)”的“FRQ(11)”引线插孔。
参考源程序
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsecond is
port (
clk: in STD_LOGIC;
clkset: in STD_LOGIC;
setmin: in STD_LOGIC;
reset: in STD_LOGIC;
secout: out STD_LOGIC_VECTOR (6 downto 0);
enmin: out STD_LOGIC
);
end xsecond;
architecture xsecond_arch of xsecond is
signal sec : std_logic_vector(6 downto 0);
signal emin : std_logic;
signal sec1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,sec,emin,setmin,clkset)
begin
if reset='0' then
enmin<='0';
secout<="0000000";
sec1<='1';
else
sec1<='0';
secout<=sec;
if clkset='1' and clkset'event then
if setmin='0' then
enmin<='1';
else
enmin<=emin;
end if;
end if;
end if;
end process;
process(clk,sec1)
alias lcount : std_logic_vector(3 downto 0) is sec(3 downto 0);
alias hcount : std_logic_vector(2 downto 0) is sec(6 downto 4);
begin
if sec1='1' then
sec<="0000000";
else
if (clk='1' and clk'event) then
if lcount=9 then
lcount<="0000";
if hcount/=5 then
hcount<=hcount+1;
emin<='0';
else
hcount<="000";
emin<='1';
end if;
else
lcount<=lcount+1;
emin<='0';
end if;
end if;
end if;
end process;
end xsecond_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xminute is
port (
clkmin: in STD_LOGIC;
reset: in STD_LOGIC;
sethour: in STD_LOGIC;
clk: in STD_LOGIC;
minout: out STD_LOGIC_VECTOR (6 downto 0);
enhour: out STD_LOGIC
);
end xminute;
architecture xminute_arch of xminute is
signal min : std_logic_vector(6 downto 0);
signal ehour : std_logic;
signal min1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,clk,sethour,min,ehour)
begin
if reset='0' then
enhour<='0';
minout<="0000000";
min1<='0';
else
min1<='1';
minout<=min;
if clk='1' and clk'event then
if sethour='0' then
enhour<='1';
else
enhour<=ehour;
end if;
end if;
end if;
end process;
process(clkmin,min1)
alias lcountm : std_logic_vector(3 downto 0) is min(3 downto 0);
alias hcountm : std_logic_vector(2 downto 0) is min(6 downto 4);
begin
if min1='0' then
min<="0000000";
else
if (clkmin='1' and clkmin'event) then
if lcountm=9 then
lcountm<="0000";
if hcountm/=5 then
hcountm<=hcountm+1;
ehour<='0';
else
hcountm<="000";
ehour<='1';
end if;
else
lcountm<=lcountm+1;
ehour<='0';
end if;
end if;
end if;
end process;
end xminute_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xhour is
port (
clkhour: in STD_LOGIC;
reset: in STD_LOGIC;
hourout: out STD_LOGIC_VECTOR (5 downto 0)
);
end xhour;
architecture xhour_arch of xhour is
signal hour : std_logic_vector(5 downto 0);
begin
-- <<enter your statements here>>
process(reset,clkhour,hour)
alias lcount : std_logic_vector(3 downto 0) is hour(3 downto 0);
alias hcount : std_logic_vector(1 downto 0) is hour(5 downto 4);
begin
if reset='0' then
hourout<="000000";
hour<="000000";
else
if (clkhour='1' and clkhour'event) then
if lcount=9 then
lcount<="0000";
hcount<=hcount+1;
else
if hour="100011" then
hour<="000000";
else
lcount<=lcount+1;
end if;
end if;
end if;
hourout<=hour;
end if;
end process;
end xhour_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xalert is
port (
clk: in STD_LOGIC;
d_in: in STD_LOGIC_VECTOR (6 downto 0);
speak: out STD_LOGIC;
d_out: out STD_LOGIC_VECTOR (2 downto 0)
);
end xalert;
architecture xalert_arch of xalert is
type state is (s1,s2,s3,s4);
signal next_state,current_state : state;
begin
-- <<enter your statements here>>
process(clk,current_state,d_in)
begin
if d_in/="0000000" then
speak<='0';
next_state<=s1;
current_state<=s1;
d_out<="000";
else
if clk='1' and clk'event then
speak<='1';
current_state<=next_state;
end if;
case current_state is
when s1 =>
d_out<="000";
next_state<=s2;
when s2 =>
d_out<="001";
next_state<=s3;
when s3 =>
d_out<="010";
next_state<=s4;
when s4 =>
d_out<="100";
next_state<=s1;
when others =>
d_out<="000";
null;
end case;
end if;
end process;
end xalert_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsettime is
port (
hour: in STD_LOGIC_VECTOR (5 downto 0);
min: in STD_LOGIC_VECTOR (6 downto 0);
sec: in STD_LOGIC_VECTOR (6 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
sel: out STD_LOGIC_VECTOR (2 downto 0);
d_out: out STD_LOGIC_VECTOR (3 downto 0)
);
end xsettime;
architecture xsettime_arch of xsettime is
signal sel1 : std_logic_vector(2 downto 0);
begin
-- <<enter your statements here>>
process(clk,reset,sel1,hour,min,sec)
begin
if reset='0' then
sel<="000";
d_out<="0000";
sel1<="000";
else
if (clk='1' and clk'event) then
if sel1<5 then
sel1<=sel1+1;
else
sel1<="000";
end if;
end if;
sel<=sel1;
case sel1 is
when "000" =>
d_out(3)<='0';
d_out(2)<='0';
d_out(1)<=hour(5);
d_out(0)<=hour(4);
when "001" =>
d_out<=hour(3 downto 0);
when "010" =>
d_out(3)<='0';
d_out(2)<=min(6);
d_out(1)<=min(5);
d_out(0)<=min(4);
when "011" =>
d_out<=min(3 downto 0);
when "100" =>
d_out(3)<='0';
d_out(2)<=sec(6);
d_out(1)<=sec(5);
d_out(0)<=sec(4);
when "101" =>
d_out<=sec(3 downto 0);
when others =>
null;
end case;
end if;
end process;
end xsettime_arch;
library IEEE;
use IEEE.std_logic_1164.all;
entity xdeled is
port (
d_in: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC
);
end xdeled;
才五分啊,太少了吧
『伍』 电子钟设计
一、数字钟的组成与基本原理
一、课程名称:数字电子钟的设计。
二、内容:设计并制作一台数字电子钟,完成设计说明书。
三、设计内容及要求:
设计内容:要求由所学的数字电子知识以及查阅有关资料设计并制作出一台数字电子钟。而且要完成电路的装配和调试。设计基本框图如下:
.......
四、要求:1>.采用位数码管,显示范围0分00秒——23时59分59秒。
2>.提出至少两种设计实现方案,并优选方案进行设计。
3>.详细说明设计方案,并计算元件参数。包括选择的依据和原理,参数确定的根据。
4>当电路发生走时误差时,要求电路具有校时功能。3、要求电路具有整点报时功能,报时声响为四低一高,最后一响正好为整点。
五、数字钟的基本原理
数字电子钟的原理方框图如图1所示。干电路系统由秒信号发生器,"时、分、秒计数器、译码器及显示器、校时电路、整点报时电路组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。将标准秒信号送入"秒计数器","秒计数器"采用60进制计数器,每累计60秒发一个"分脉冲"信号,该信号将作为"分计数器"的时钟脉冲。"分计数器"也采用60进制计数器,每累计60分钟,发出一个"时脉冲"信号,该信号将被送到"时计数器"。"时计数器"采用24进制计时器,可实现对一天24小时的累计。译码显示电路将"时"、"分"、"秒"计数器的输出状态菁七段显示译码器译码,通过六位LED七段显示器显示出来。整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。校时电路时用来对"时"、"分"、"秒"显示数字进行校对调整的
『陆』 数字电子钟的设计与制作
我有
单片机实现时间、闹钟还有日历功能的!
有Protel电路图和程序
『柒』 电子钟设计原理图
设计题目 电子钟
具有6个led 显示器,分别显示 时,分,秒
要求能设置时间,并且时间精度,每天误差小于30秒。
主要任务
1) 设计控制系统数字电子电路部分的电原理图
2) 按照电原理图制作实物(制线路版,焊接)
3) 编制单片机控制程序
4) 综合调式
以上设计先把电原理图和程序用电子邮件寄来,然后再做样机调式。
程序范列
;实用单片机电子钟的制作
;主程序(MAIN),如下:
ORG 0000H
AJMP MAIN
ORG 000BH
AJMP TIME
ORG 0300H
MAIN:
mov 20h,#00h
MOV 21H,#00H
MOV 22H,#00H
MOV 23H,#00H
MOV IP,#02H ;IP,IE初始化
MOV IE,#82H
MOV TMOD,#01H ;设定定时器工作方式?
MOV TL0,#0B0H
MOV TH0,#3CH
SETB TR0 ;启动定时?
MOV SP,#40H ;重设堆栈指针
NEXT: LCALL DISP ;调用显示子程序?
LCALL KEY ;调用按键检测子程序
JZ NEXT ;
LCALL ANKEY ;调用按键处理子程序
SJMP NEXT ;重新循环
NOP
NOP
NOP
;定时中断处理程序:
TIME: PUSH ACC ;保护现场
PUSH PSW
MOV TL0,#0B4H ;赋定时初值
MOV TH0,#3CH
INC 20H ;
MOV A,20H
CJNE A,#20,RETI1
MOV 20H,#00H ;一秒钟时间到
MOV A,21H
ADD A,#01H
DA A
MOV 21H,A
CJNE A,#60H,RETI1
MOV 21H,#00H ;一分钟时间到
MOV A,22H
ADD A,#01H
DA A
MOV 22H,A
CJNE A,#60H,RETI1
MOV 22H,#00H ;一小时时间到
MOV A,23H
ADD A,#01H
DA A
MOV 23H,A
CJNE A,#24H,RETI1
MOV 23H,#00H ;到时间达到24小时,清零.
RETI1: POP PSW ;恢复现场
POP ACC
RETI ;中断返回?
NOP
NOP
;显示子程序
DISP: ANL 2FH,#10H ;处理小数点
MOV A,21H ;处理秒21H-->2DH,2EH
ANL A,#0FH
ORL A,2FH
MOV 2FH,A
MOV A,21H
ANL A,#0F0H
SWAP A
MOV 2EH,A
ANL 2DH,#10H
MOV A,22H ;处理分钟22H-->2CH,2DH
ANL A,#0FH
ORL A,2DH
MOV 2DH,A
MOV A,22H
ANL A,#0F0H
SWAP A
MOV 2CH,A
ANL 2BH,#10H
MOV A,23H ;处理小时23H-->2AH,2BH
ANL A,#0FH
ORL A,2BH
MOV 2BH,A
MOV A,23H
ANL A,#0F0H
SWAP A
MOV 2AH,A
MOV R0,#2FH ;显示偏移量
MOV R3,#06H
MOV DPTR,#TABLE
MOV A,#0BFH
LOOP1: MOV B,A ;
MOV P2,a
MOV A,@R0
MOVC A,@A+DPTR
MOV P0,a ;送显示
MOV R2,#80H ;延时
DJNZ R2,$
DEC R0
MOV A,B
RR A
DJNZ R3,LOOP1 ;循环显示
RET
TABLE: db 28h,7eh,0a2h,62h,74h,61h,21h ;不带小数点
DB 7ah,20h,60h,00,00,00,00,00,00
DB 8H,5eH,82H,42H,54H,41H,1H,5aH ;带小数点
DB 00H,40H,00,00,00,00,00,00
NOP
NOP
;按键判断程序
KEY: MOV P3,#0FFH ;
MOV A,P3
CPL A
ANL A,#3CH
JZ RETX ;无键按下则返回
LCALL DISP ;
LCALL DISP
MOV A,P3
CPL A
ANL A,#3CH
JZ RETX ;键盘去抖动。
MOV R6,A ;将键值存入R6。
LOOP2: LCALL DISP ;
MOV A,P3
CPL A
ANL A,#3CH
JNZ LOOP2 ;等待键释放
MOV A,R6
RETX: RET
NOP
NOP
;按键处理子程序
ANKEY: CLR EA ;关中断
LX: MOV A,R6
JB ACC.2,L1 ;是功能键转L1
JB ACC.3,L2 ;是确认键转L2
JB ACC.4,L3 ;是减1键转L3
JNB ACC.5,L12 ;不是增1键,转L12
JB 2BH.4,L6 ;判断使哪一位(时、分、秒)的值加1
JB 2DH.4,L8
JB 2FH.4,L9
L12: LCALL DISP
LCALL DISP
LCALL KEY ;判断有无键按下。
JZ L12
LJMP LX
L2: MOV 25H,#00H ;确认键处理程序
CLR 2BH.4
CLR 2DH.4
CLR 2FH.4
SETB EA
RET
L3: JB 2BH.4,L61 ;增一键处理程序
JB 2DH.4,L81
JB 2FH.4,L91
AJMP L12
L1: MOV A,25H ;功能键处理程序
JZ LB1
JB ACC.0,LB2
JB ACC.1,LB3
JNB ACC.2,L12
LB1: MOV 25H,#01H ;25H单元是标志位,(25H)=01H调节时单元的值
SETB 2BH.4
CLR 2DH.4
CLR 2FH.4
AJMP L12
LB3: MOV 25H,#04H ;25H单元是标志位,(25H)=01H调节秒单元的值
SETB 2FH.4
CLR 2DH.4
CLR 2BH.4
AJMP L12
LB2: MOV 25H,#02H ;25H单元是标志位,(25H)=01H调节分单元的值
SETB 2DH.4
CLR 2BH.4
CLR 2FH.4
AJMP L12
L61: AJMP L611 ;
L81: AJMP L811 ;
L91: AJMP L911
L6: MOV A,23H ;时加一
ADD A,#01H
DA A
MOV 23H,A
CJNE A,#24H,L15
L15: JC L112
MOV 23H,#00H
L112: AJMP L12
L8: MOV A,22H ;分加一
ADD A,#01H
DA A
MOV 22H,A
CJNE A,#60H,L16
L16: JC L112
MOV 22H,#00H
AJMP L12
L9: MOV A,21H ;秒加一
ADD A,#01H
DA A
MOV 21H,A
CJNE A,#60H,L17
L17: JC L112
MOV 21H,#00H
AJMP L12
L611: MOV A,23H ;时减一
ADD A,#99H
DA A
MOV 23H,A
CJNE A,#99H,L112
MOV 23H,#23H
AJMP L12
L811: MOV A,22H ;分减一
ADD A,#99H
DA A
MOV 22H,A
CJNE A,#99H,L112
MOV 22H,#59H
AJMP L12
L911: MOV A,21H ;秒减一
ADD A,#99H
DA A
MOV 21H,A
CJNE A,#99H,L112
MOV 21H,#59H
AJMP L12
NOP
NOP
END
『捌』 电子钟的制作设计说明
程序范列
;实用单片机电子钟的制作
;主程序(MAIN),如下:
ORG 0000H
AJMP MAIN
ORG 000BH
AJMP TIME
ORG 0300H
MAIN:
mov 20h,#00h
MOV 21H,#00H
MOV 22H,#00H
MOV 23H,#00H
MOV IP,#02H ;IP,IE初始化
MOV IE,#82H
MOV TMOD,#01H ;设定定时器工作方式?
MOV TL0,#0B0H
MOV TH0,#3CH
SETB TR0 ;启动定时?
MOV SP,#40H ;重设堆栈指针
NEXT: LCALL DISP ;调用显示子程序?
LCALL KEY ;调用按键检测子程序
JZ NEXT ;
LCALL ANKEY ;调用按键处理子程序
SJMP NEXT ;重新循环
NOP
NOP
NOP
;定时中断处理程序:
TIME: PUSH ACC ;保护现场
PUSH PSW
MOV TL0,#0B4H ;赋定时初值
MOV TH0,#3CH
INC 20H ;
MOV A,20H
CJNE A,#20,RETI1
MOV 20H,#00H ;一秒钟时间到
MOV A,21H
ADD A,#01H
DA A
MOV 21H,A
CJNE A,#60H,RETI1
MOV 21H,#00H ;一分钟时间到
MOV A,22H
ADD A,#01H
DA A
MOV 22H,A
CJNE A,#60H,RETI1
MOV 22H,#00H ;一小时时间到
MOV A,23H
ADD A,#01H
DA A
MOV 23H,A
CJNE A,#24H,RETI1
MOV 23H,#00H ;到时间达到24小时,清零.
RETI1: POP PSW ;恢复现场
POP ACC
RETI ;中断返回?
NOP
NOP
;显示子程序
DISP: ANL 2FH,#10H ;处理小数点
MOV A,21H ;处理秒21H-->2DH,2EH
ANL A,#0FH
ORL A,2FH
MOV 2FH,A
MOV A,21H
ANL A,#0F0H
SWAP A
MOV 2EH,A
ANL 2DH,#10H
MOV A,22H ;处理分钟22H-->2CH,2DH
ANL A,#0FH
ORL A,2DH
MOV 2DH,A
MOV A,22H
ANL A,#0F0H
SWAP A
MOV 2CH,A
ANL 2BH,#10H
MOV A,23H ;处理小时23H-->2AH,2BH
ANL A,#0FH
ORL A,2BH
MOV 2BH,A
MOV A,23H
ANL A,#0F0H
SWAP A
MOV 2AH,A
MOV R0,#2FH ;显示偏移量
MOV R3,#06H
MOV DPTR,#TABLE
MOV A,#0BFH
LOOP1: MOV B,A ;
MOV P2,a
MOV A,@R0
MOVC A,@A+DPTR
MOV P0,a ;送显示
MOV R2,#80H ;延时
DJNZ R2,$
DEC R0
MOV A,B
RR A
DJNZ R3,LOOP1 ;循环显示
RET
TABLE: db 28h,7eh,0a2h,62h,74h,61h,21h ;不带小数点
DB 7ah,20h,60h,00,00,00,00,00,00
DB 8H,5eH,82H,42H,54H,41H,1H,5aH ;带小数点
DB 00H,40H,00,00,00,00,00,00
NOP
NOP
;按键判断程序
KEY: MOV P3,#0FFH ;
MOV A,P3
CPL A
ANL A,#3CH
JZ RETX ;无键按下则返回
LCALL DISP ;
LCALL DISP
MOV A,P3
CPL A
ANL A,#3CH
JZ RETX ;键盘去抖动。
MOV R6,A ;将键值存入R6。
LOOP2: LCALL DISP ;
MOV A,P3
CPL A
ANL A,#3CH
JNZ LOOP2 ;等待键释放
MOV A,R6
RETX: RET
NOP
NOP
;按键处理子程序
ANKEY: CLR EA ;关中断
LX: MOV A,R6
JB ACC.2,L1 ;是功能键转L1
JB ACC.3,L2 ;是确认键转L2
JB ACC.4,L3 ;是减1键转L3
JNB ACC.5,L12 ;不是增1键,转L12
JB 2BH.4,L6 ;判断使哪一位(时、分、秒)的值加1
JB 2DH.4,L8
JB 2FH.4,L9
L12: LCALL DISP
LCALL DISP
LCALL KEY ;判断有无键按下。
JZ L12
LJMP LX
L2: MOV 25H,#00H ;确认键处理程序
CLR 2BH.4
CLR 2DH.4
CLR 2FH.4
SETB EA
RET
L3: JB 2BH.4,L61 ;增一键处理程序
JB 2DH.4,L81
JB 2FH.4,L91
AJMP L12
L1: MOV A,25H ;功能键处理程序
JZ LB1
JB ACC.0,LB2
JB ACC.1,LB3
JNB ACC.2,L12
LB1: MOV 25H,#01H ;25H单元是标志位,(25H)=01H调节时单元的值
SETB 2BH.4
CLR 2DH.4
CLR 2FH.4
AJMP L12
LB3: MOV 25H,#04H ;25H单元是标志位,(25H)=01H调节秒单元的值
SETB 2FH.4
CLR 2DH.4
CLR 2BH.4
AJMP L12
LB2: MOV 25H,#02H ;25H单元是标志位,(25H)=01H调节分单元的值
SETB 2DH.4
CLR 2BH.4
CLR 2FH.4
AJMP L12
L61: AJMP L611 ;
L81: AJMP L811 ;
L91: AJMP L911
L6: MOV A,23H ;时加一
ADD A,#01H
DA A
MOV 23H,A
CJNE A,#24H,L15
L15: JC L112
MOV 23H,#00H
L112: AJMP L12
L8: MOV A,22H ;分加一
ADD A,#01H
DA A
MOV 22H,A
CJNE A,#60H,L16
L16: JC L112
MOV 22H,#00H
AJMP L12
L9: MOV A,21H ;秒加一
ADD A,#01H
DA A
MOV 21H,A
CJNE A,#60H,L17
L17: JC L112
MOV 21H,#00H
AJMP L12
L611: MOV A,23H ;时减一
ADD A,#99H
DA A
MOV 23H,A
CJNE A,#99H,L112
MOV 23H,#23H
AJMP L12
L811: MOV A,22H ;分减一
ADD A,#99H
DA A
MOV 22H,A
CJNE A,#99H,L112
MOV 22H,#59H
AJMP L12
L911: MOV A,21H ;秒减一
ADD A,#99H
DA A
MOV 21H,A
CJNE A,#99H,L112
MOV 21H,#59H
AJMP L12
NOP
NOP
END