mac协议
1. MAC协议的介绍
信道划分的MAC协议: 时间(TDMA)、频带(FDMA)、码片(CDMA)划分随机访问MAC协议: ALOHA,S-ALOHA,CSMA,CSMA/CD,其中CSMA/CD应用于以太网,CSMA/CA应用于802.11无线局域网轮转访问MAC协议: 主节点轮询;令牌传递 蓝牙、FDDI、令牌环网
2. 竞争型,分配型和混合型mac协议各有什么特点
基于竞争的MAC协议有以下优点:可根据需要分配信道,所以这种协议能较好的满足节点数量和网络负载的变化。能较好的适应网络拓扑的变化。不需要复杂的时间同步或控制调度算法。分配式的无线传感器网络MAC协议有如下优点:无冲突。无隐蔽终端问题。易于休眠,适合于低功耗网络。
3. s-mac协议针对这些因素采取了哪些措施
S-MAC协议是在IEEE 802.11协议的SC9636-006基础上针对传感器网络节省能量的需求设计的。S-MAC包括了从各种能量消耗方式中节省能耗的方法,比如:空闲侦听、冲突、串音和控制开销。在描述 S-MAC的构成之前,我们首先概述关于无线传感网络及其应用的设想。
无线传感网络的MAC协议的S-MAC协议概述
传感网络由多个节点组成,利用短距离多跳通信来保存能量,大部分通信都发生在对等节点之间。网内处 理对网络生存期很重要,也就是暗示数据将作为整个消息以存储转发的方式进行处理。最后,我们假设应用 将具有很长一段空闲时间,并且能够容忍网络传递时间顺序的延迟。
1.周期性侦听和休眠
如上所述,在多数传感网络应用中,如果没有感测到事件发生,节点将长期空闲。我们假设这样一个事实 ,在该段时期内数据速率非常低,因此没有必要使节点一直保持侦听。S——MAC通过让节点处于周期休眠状态 来降低侦听时间,每个节点休眠一段时间,然后唤醒并侦听是否有其他节点想和它通信。在休眠期间,节点 关闭无线装置,并设置定时器,随后来唤醒自己。
侦听和休眠的一个完整周期被称为一帧。侦听间隔通常是固定的,根据物理层和MAC层的参数来决定,比 如无线带宽和竞争窗口大小。占空比指侦听间隔与整个帧长度之比。休眠间隔可能根据不同的应用需求而改 变,它实际上改变占空比。简单而言,这些值对所有的节点都是一样的,所有节点都可以自由选择它们各自 的侦听/休眠时间表。然而,为了降低控制开销,我们更希望邻居节点保持同步,也就是说它们同时侦听和 同时进入休眠。值得注意的是,在多跳网络中不是所有的邻居节点都能够保持同步。如果节点A和节点B必须 分别与不同的节点C和节点D同步,那么节点A和节点B可能具有不同的时间表,邻居节点A和B具有不同的时间表,它们分别与节点C和节点D保持同步。
节点通过周期地向它们的直接邻居广播SYNC包来交换它们的时间表。一个节点在预定侦听时间与它的邻居 节点通信,以确保所有邻居节点能够通信,即使它们具有不同的时间表。比如,如果节点A想与 节点B通信,节点A必须等待直到节点B在侦听c一个节点发送一个SYNC包的时间称为同步时间。S——MAC的一个 特征是它将节点形成一个平面型的对等拓扑结构,不像簇协议,SMAC不需要通过簇头协作。相反,节点在公 用时间表形成虚拟簇,与对等节点之间直接通信。该方法的一个优点是在拓扑发生变化时,它比基于簇方法 健壮。该机制的不足是由于周期休眠增加了延迟,而且,延迟有可能在每跳积聚。
2.冲突避免
如果多个邻居节点同时想与一个节点通信,它们将试图在该节点开始侦听时发送消息,在该情况下,它们需要竞争媒体。在竞争协议中,IEEE 802.II在冲突避免这方面做得很好。S——MAC遵循类似的流程,包括虚拟载波侦听和物理载波侦听,解决隐藏终端问题的RTS/CTS(请求发送/清除发送)交换。每个传输包中都有一个持续时闾域来标识该包要传输多长时间,如果一个节点收到一个传输给另外一个节点的包,该节点就能从持续时间域知道在多长时间内不能发送数据。节点以变量形式记录该值,被称为网络分配矢量(NAV),NAV可以被看成一个计时器,每次计时器开始计时,节点递减它的NAV,直到减少到0。在传输之前,节点首先检查它的NAV,如果它的值不为0,节点就认为媒体忙,这被称为虚拟载波侦听。物理载波侦听在物理层执行,通过侦听信道进行可能的传输。载波侦听时间是竞争窗口内的一个随机值,以避免冲突和饥饿现象。如果虚拟载波侦听和物理载波侦听都标识媒体空闲,那么媒体就是空闲的。
在开始传输前,所有发送者都执行载波侦听。如果一个节点没有获得媒体,它将进入休眠,当接收机空闲和再一次侦听时唤醒。广播分组的发送不需要RTS/CTS,单播分组在发送者和接收者之间遵循RTS/CTS/DATA/ACK序列。RTS和CTS成功交换后,两个节点将利用它们的休眠时间进行数据分组传输,直到它们完成传输后才遵循它们的休眠时间表。在每个侦听间隔内,由于占空比操作和竞争机制,S-MAC有效地标识由于侦听和碰撞产生的能量消耗。
4.S-MAC协议实现的关键技术如下。
(1)数据包的嵌套结构
在S-MAC协议中,上一层数据包包含了下一层数据包的内容。数据包传送到哪一层,那一层只需要处理属于它的部分。
(2)堆栈结构和功能
在S-MAC协议堆栈内,当MAC层接收到上层传送过来的数据包后,它就开始载波侦听。如果结果显示MAC层空闲,它就会把数据传到物理层;如果MAC层忙,它将会进入睡眠状态,直到下一个可用时间的到来,再重新发送。当MAC层在收到物理层传送过来的数据包后,先通过循环冗余校验(CRC)表示没有错误,MAC层就会将数据包传向上层。
(3)选择和维护调度表
在开始周期性侦听和睡眠之前,每个节点都需要选择睡眠调度机制并与邻居节点一致。如何选择和保持调度机制分为以下3种情况。
①节点在侦听时间内,如果它没有侦听到其他节点的睡眠调度机制,则立即选择一个睡眠调度机制。
②当节点在选择和宣布自己的调度机制之前,收到了邻居节点广播的睡眠调度机制,它将采用邻居节点的睡眠调度机制。
③当节点在选择和广播自已的睡眠调度机制之后,收到几种不同的睡眠调度机制时,就要分以下两种情况考虑:当节点没有邻居节点时,它会舍弃自己当前的睡眠调度机制,采用刚接收到的睡眠调度机制;当节点有一个或更多邻居节点时,它将同时采用不同的调度机制。
(4)时间同步
在S-MAC协议中,节点与邻居节点需要保持时间同步来同时侦听和睡眠。S-MAC协议采用的是相对而不是绝对的时间戳,同时使侦听时间远大于时钟误差和漂移,来减少同步误差,并且节点会根据收到的邻居节点的数据包来更新自己的时间,从而与邻居节点保持时间同步。
(5)带冲突避免的载波侦听多路访问
带冲突避免的载波侦听多路访问( CSMA/CA)的基本机制是在接收者和发送者之间建立一个握手机制来传输数据。
握手机制是:由发送端发送一个请求发送( RTS)包给它的接收者,接收者在收到以后就回复一个准备接收(CTS)包,发送端在收到CTS包后,开始发送数据包,RTS与CTS之间的握手是为了使发送端和接收端的邻居节点知道它们正在进行数据传输,从而减少传输碰撞。
(6)网络分配矢量
在S-MAC协议中,每个节点都保持了一个网络分配矢量(NAV)来表示邻居节点的活动时间,S-MAC协议中在每个数据包中都包含了一个持续时间指示值,持续时间指示值表示目前这个通信需要持续的时间。邻居节点收到发送者或接收者发往其他节点的数据包时,就可以知道它需要睡眠多久,即用数据包中的持续时间更新NAV昀值,当NAV的值不为零时,节点应该进入睡眠状态来避免串音。当NAV变为零时,它就马上醒来,准备进行通信。
与IEEE 802.11 MAC相比,S-MAC协议尽量延长其他节点的休眠时间,降低了碰撞概率,减少了空闲侦听所消耗的能源;通过流量自适应的侦听机制,减少消息在网络中的传输延迟;采用带内信令来减少重传和避免监听不必要的数据;通过消息分割和突发传递机制来和带内数据处理来减少控制消息的开销和消息的传递延迟。因而S-MAC协议具有很好的节能特性,这对无线传感网络的需求和特点来说是合理的,但是由于S-MAC中占空比固定不变,因此它不能很好地适应网络流量的变化,而且协议的实现非常复杂,需要占用大量的存储空间。这个对于资源受限的传感器节点尤为突出。
4. Mac 协议中的DIFS、PIFS和SIFS 有什么功能和联系
SIFS
Short Interframe Space(SIFS):在802.11系列无线局域网中SIFS是固定值,SIFS是最小的帧间间隔,因此采用SIFS的节点具有访问无线链路的最高优先级。
它等于节点从发送状态切换到接收状态并能正确解码所需要的时间,或者从接收状态转为发送状态所需要的时间,在SIFS过期后可能发送的数据包包括ACK、CTS帧,不同标准中规定的SIFS值不同。
Standard SIFS(μs)。
IEEE 802.11b 10。
IEEE 802.11a 16。
IEEE 802.11g 10。
DIFS。
DCF Interframe Space(DIFS):在DCF协议中,节点在开始发送数据之前需要监测信道是否空闲。如果信道已经空闲,则节点仍需等待DIFS段时间才开始发送数据;而如果在DIFS时间段内任一时刻信道被监测为忙,则节点不得不推迟它的数据发送。
DIFS和SIFS间的计算关系如下:
DIFS = SIFS + (2 * Slot time)。
Standard Slot Time(µs) DIFS(µs)。
IEEE 802.11b 20 50。
IEEE 802.11a 9 34。
IEEE 802.11g 9 or 20 28 or 50。
PIFS。
PCF Interframe Space(PIFS):PCF使得AP等待PIFS而不是DIFS时间以访问信道,由于DIFS > PIFS > SIFS,因此AP总比普通节点具有更高的访问信道的优先级。
PIFS = SIFS + Slot time。
Standard Slot time(µs) PIFS(µs)。
IEEE 802.11b 20 30。
IEEE 802.11a 9 25。
IEEE 802.11g 9 or 20 19 or 30。
EIFS。
Extended Interframe Space(EIFS):在前一帧出错的情况下,发送节点不得不延迟EIFS而不是DIFS时间段后再发送下一帧。
EIFS = Transmission time of Ack frame at lowest basic rate + SIFS + DIFS。
5. MAC 地址用的是什么协议
mac地址就是mac地址不单独属于哪个协议
mac地址是全球唯一标示一块网卡的
出厂时就被固化进去了
不过网卡属于OSI七层模型里的第一层物理层
交换机属于第二层数据链路层的是利用mac地址传递数据的
总之最后都归到TCP/IP协议栈里面了
6. 路由协议和MAC协议有什么区别
路由协议是第三层复的协议,用于网络制寻址,类似于邮政编码,它是一个逻辑上的地址
路由协议就是在路由指导IP数据包发送过程中事先约定好的规定和标准
MAC协议是第二层的协议,用于物理寻址,类似于信封上的收发地址
MAC 协议最重要的功能是确定网上的某个站点占有信道,即信道分配问题
你想一下信封传递的过程,首先肯定是看邮政编码,送到具体的位置(省,市,区,县),再然后查看你填写的收信人的地址,然后交给他,这就是区别,还有哪里不懂的直接问我,我来详细的解答
7. 请简单介绍分析sーmac协议的特点
S-MAC协议的关键技术一是周期性的睡眠和监听,S-MAC协议的特点是通过睡眠机制减少了空闲侦听的能量损耗,实现简单,交换交换时间表减少了同步所需要的开销;同时S-MAC协议主要适用在数据量少,可进行数据的处理和融合,节点协同完成共同的任务,网络可以容忍一定程度的通信
8. mac要怎么同意用户协议及隐私政策
登录账号的时候会要求你同意隐私条款
其他时候一般不需要
打开app store登录或者注册Apple ID账号
或者点击系统偏好设置-账号里面登录iCloud账号
如果之前没有同意过隐私政策的话会跳出来让你同意的
之前同意过就不需要了
9. 路由协议和MAC协议有什么区别
如下:
10. 无线传感器网络MAC协议有哪些基本分类
没有统一的MAC协议分类方式,但是大体依据标准分为三种,如根据网络拓扑结构方式(分布式和集中式控制);使用单一或多信道方式;采用固定分配信道还是随机访问信道方式。
已有的参考文献也将无线传感器网络MAC协议分为三类:确定性分配、竞争占用和随机访问。前两者不是传感器网络的理想选择。因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机。竞争占用方案需要实时监测信道状态也不是一种合理的选择。随机介质访问模式比较适合于无线传感网络的节能要求。
下面介绍根据信道分配使用方式,将无线传感器网络MAC协议分为基于无线信道随机竞争方式和时分复用方式及基于时分和频分复用等其他混合方式三种。
1) 无线信道随机竞争接入方式(CSMA)
节点需要发送数据时采用随机方式使用无线信道,典型的如采用载波监听多路访问(CSMA)的MAC协议,需要注意隐藏终端和暴露终端问题,尽量减少节点间的干扰。
2) 无线信道时分复用无竞争接入方式(TDMA)
采用时分复用(TDMA)方式给每个节点分配了一个固定的无线信道使用时段,可以有效避免节点间的干扰。
3) 无线信道时分/频分/码分等混合复用接入方式(TDMA/FDMA/CDMA)
通过混合采用时分和频分或码分等复用方式,实现节点间的无冲突信道分配策略。