当前位置:首页 » 合同协议 » 如何求合同矩阵

如何求合同矩阵

发布时间: 2021-03-12 02:14:42

⑴ 4,5题,求合同矩阵,要过程

第四题答案为D求合同矩阵就是对原矩阵进行合同变换,等价于对行和列均进行一次相同的变换,对于A,第二列减去4倍第一列,第二行减去4倍第一行即可,第五题答案为B,可以这么想,A的特征值为3,3,0。所以A可以经过正交矩阵变换为diag{3,3,0},再经过初等变换即可得到答案,正交矩阵再乘上一个初等变换矩阵就是合同变换矩阵

⑵ 如图,怎么求合同矩阵

第一,两个矩阵合同一定都是实对称阵,答案都复合。

第二,合同矩阵一定具有相同特征值,也就是说主对角线元素相等即可。

答案选D。

⑶ 合同矩阵里那个矩阵P怎么求

p就是A的特征向量经过正交化、单位化以后拼成的矩阵 ,和A的相似对角化中p的求法完全一样。因为A是实对称阵 一定存在正交阵P (p的逆就是p的转置)把A化为对角阵

⑷ 如图,怎么求合同矩阵啊,求步骤

第一,两个矩阵合同一定都是实对称阵,答案都复合。

第二,合同矩阵一定回具有相同特答征值,也就是说主对角线元素相等即可。

答案选D。

⑸ 合同矩阵该怎么找

1 对于任一实系数n元二次型X'AX,要化为标准型,实际上就是要找一个可逆变换X=CY,将它化为Y'BY的形式,其中B为对角阵。则C'AC=B,B就是A的一个合同矩阵了。
2 如果你想要的是将A经合同变换化为B时的变换矩阵C,常用的方法有3种,即配方法、初等变换法和正交变换法。
(1)配方法:如果二次型中含变量xi的平方项,则先将含xi的项集中,按xi配成完全平方,直至都配成平方项;如果二次型不含平方项,但某混合项系数aij不为0,可先通过xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)这一可逆变换使二次型中出现平方项后,按前一方法配方。
例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3
=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;
作变换y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得标准型f=y1^2-3y2^2+7/3*y3^2.
将上述变换求出逆变换x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,写成矩阵形式X=CY形式,其中C=(1,-2,-5/3;0,1,-1/3;0,0,1)(分号表示矩阵行结束)就是合同变换中的变换矩阵。
例,f=2x1x2-6x1x3,无平方项,则先作变换x1=y1+y2,x2=y1-y2,y3=x3,代入f中
f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;
再作变换z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆变换y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成
f=2z1^2-2z2^2这种标准二次型。
最后将再次用的变换写成矩阵形式,X=C1*Y,Y=C2*Z的形式,X=C1*C2*Z,则C=C1*C2就是所求(具体计算略)。
(2)初等变换法:
将二次型的矩阵A与同阶单位阵I合并成n_2n的矩阵(A|I),在这个矩阵中作初等行变换并对子块A再作同样的初等列变换,当将A化为对角阵时,子块I将会变为C’。
(3)正交变换法:
先写出二次型f的tdbl,它是实对称矩阵,求出全部特征值λi(i=1,2,……,n);再对每一特征值写出它所对应的单位特征向量(特征值相同的不同特征向量注意正交化);把上述单位正交特征向量作为矩阵的列构造正交矩阵T,那么正交变换X=TY将会把二次型X'AX化为标准形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2

⑹ 求矩阵的合同矩阵,已知对称矩阵A,B,且A与B合同,即C`AC=B,求C。

按你说的是可以的,原理如下:
P^(-1)AP=A1=C1'BC1
=>(C1')^(-1)P^(-1)APC1^(-1)=B
C=PC1^(-1)
但是这样做未免太麻烦,而且你不知道A可否相似对角化的情况下还要对其进行验证,所以这种方法你用着玩玩可以,别太认真用。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837