当前位置:首页 » 合同协议 » 合同相似等价

合同相似等价

发布时间: 2021-03-03 03:36:38

⑴ 请问矩阵合同,相似,等价三者的关系是什么

如果A和B都是一般的n阶矩阵,那么
1) A相似于B(P^{-1}AP=B) => A等价内于B(容P^{-1}AQ=B)
2) A合同于B(C^HAC=B) => A等价于B(P^{-1}AQ=B)
不要背结论,要知道每个术语的具体意义,然后上面的结论都是显然的(如果不显然说明白学了)

对于Hermite矩阵而言(A和B都是Hermite阵)还有一个特殊的关系
A相似于B <=> A正交相似于B => A合同于B
这个需要用谱分解定理

⑵ 相似合同等价的关系是什么 我看的有的说是 ①对于实对称阵,相似推出合同,合同推出等价,反之不成立

等价指的是两个矩阵的秩一样
合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样
相似是指两个矩阵特征值一样.
相似必合同,合同必等价.

⑶ 矩阵的等价关系,有合同,相似,等价三种,合同和相似分别是几种呢求解答,谢谢!

合同和相似对应的分类都是无限多种。

如果,你学过基数相关的知识,实际上他是连续统基数(这个基数是无穷基数)那么多种。

⑷ 如何判断矩阵合同、相似、等价

1、矩阵等价

矩阵A与B等价必须具备的两个条件:

(1)矩阵A与B必为同型矩阵(不要求是方阵);

(2)存在s阶可逆矩阵p和n阶可逆矩阵Q, 使B= PAQ。

2、矩阵A与B合同

必须同时具备的两个条件:

(1) 矩阵A与B不仅为同型矩阵而且是方阵;

(2) 存在n阶矩阵P: P^TAP= B。

3、矩阵A与B相似

必须同时具备两个条件:

(1)矩阵A与B不仅为同型矩阵,而且是方阵;

(2)存在n阶可逆矩阵P,使得P^-1AP= B。

(4)合同相似等价扩展阅读

矩阵的相似,实际上两个相似矩阵描述的是同一个线性变换,只是在不同基底下的坐标表示。相似矩阵的特征值相同,秩也相同,方阵对应的行列式也相同。

判断两个矩阵是否相似,一般的题型是看两个矩阵能否相似于同一对角阵。同时两个矩阵相似,其对应的以矩阵为变量的两个函数也相似。

矩阵的合同是在二次型的背景下提出来的,理解合同就针对二次型里的对称阵,给一个二次型,我们可以写成矩阵表达形式,做一系列的可逆变换,新得到的表示二次型的矩阵,就是与原矩阵合同的新矩阵。

对于对称阵,两矩阵合同的重要条件是正负惯性指数相同,也就是正特征值的个数,负特征值的个数相同。

矩阵相似与否和合同与否没有直接关系,但在我们的考试当中,一般考察对称阵,在对称阵的前提下,矩阵相似一定合同,合同不一定相似。相似要求特征值一样,合同只要求特征值的正负性一样。

⑸ 请问矩阵合同,相似,等价三者的关系是什么

如果A和B都是一般的n阶矩阵,那么
1) A相似于B(P^{-1}AP=B) => A等价专于B(属P^{-1}AQ=B)
2) A合同于B(C^HAC=B) => A等价于B(P^{-1}AQ=B)
不要背结论,要知道每个术语的具体意义,然后上面的结论都是显然的(如果不显然说明白学了)
对于Hermite矩阵而言(A和B都是Hermite阵)还有一个特殊的关系
A相似于B A正交相似于B => A合同于B
这个需要用谱分解定理

⑹ 相似和合同的关系

1、等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数版,特征值均相同权),矩阵亲密关系的一步步深化。

2、相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵 ,PQ=EPQ=E 的等价矩阵是相似矩阵。

3、合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵,正惯性指数相同的等价矩阵是合同矩阵。合同矩阵未必是相似矩阵,相似矩阵未必合同。

4、正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵。如果A与B都是n阶实对称矩阵,且有相同的特征根.则A与B既相似又合同。

⑺ 矩阵的等价相似和合同三者有何区别

1、等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。

2、相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵 ,PQ=EPQ=E的等价矩阵是相似矩阵。

3、合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵,正惯性指数相同的等价矩阵是合同矩阵。合同矩阵未必是相似矩阵,相似矩阵未必合同。

4、正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵。如果A与B都是n阶实对称矩阵,且有相同的特征根.则A与B既相似又合同。

(7)合同相似等价扩展阅读:

矩阵切换器技术指标

矩阵切换器根据不同的应用领域,所要求的技术指标也不同。以广电行业为例,为保证终端的显示质量,广电行业将整个信号传输过程,从摄像头开始到电视机为止,都进行了技术指标分配,对模拟矩阵切换和分配。

一般指在多路输入的情况下有多路的输出选择,形成的矩阵结构,将形成M×N的结构称为矩阵切换器,而将M×1的结构称为切换器或选择器,1×M的结构称为分配器。矩阵的原理是利用芯片内部电路的导通与关闭进行接通与关断,并可通过电平进行控制完成信号的选择。

⑻ 矩阵等价,相似,合同之间的区别和联系

一、矩阵等价、相似和合同之间的区别:

1、等价,相似和合同三者都是等价关系。

2、矩阵相似或合同必等价,反之不一定成立。

3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。

4、矩阵相似,则存在可逆矩阵P使得,AP=PB。

5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。

6、当上述矩阵P是正交矩阵时,即P^T=P^(-1),则有A,B之间既满足相似,又满足合同关系。

二、矩阵等价、相似、合同之间联系:

1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。

2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。

3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。

4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。

(8)合同相似等价扩展阅读:

矩阵等价:

1、同型矩阵而言。 

2、一般与初等变换有关。

3、 秩是矩阵等价的不变量,其次两同型矩阵相似的本质是秩相等。

矩阵相似:

1、针对方阵而言。

2、秩相等是必要条件。

3、本质是二者有相等的不变因子。

矩阵合同:

1、针对方阵而言,一般是对称矩阵。

2、秩相等是必需条件。

3、本质是秩相等且正惯性指数相等,即标准型相同。 

通过上述的对比可知,等价关系是三种关系中条件最弱的,合同与相似是特堵的等价关系,若两个矩阵相似或合同,则这两个矩阵一定等价,反之不成立,相似与合同不能互相推导,但是如果两个实对称矩阵式相似的,那一定是合同的。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837