当前位置:首页 » 版权产权 » 大数据使用权

大数据使用权

发布时间: 2021-02-28 18:45:11

Ⅰ 大数据的管理和使用包括哪些内容

技术模型控制、适应传统管理工作需求 新一代电子政务系统在得出了业务资源及关系模型和业务资源权限控制模型后,再结合机关单位办公实际,梳理传统管理工作需求,把机关单位的传统管理工作、规章制度通过技术模型的形式固定了。还有像传统的规章制度中对文件传阅控制、处理规定等,新一代电子政务系统就通过查询授权功能在技术上实现。提炼标准模型在创新的业务核心模型基础上,新一代电子政务系统建设为了保障业务核心模型的有效实现和规划,再提炼了业务标准模型。统一数据库结构设计 新一代电子政务系统通过数据标准规范,统一了各子系统的数据结构标准,从数据底层实现了标准统一,为各子系统之间的数据共享和数据整合提供了统一结构基础。统一系统和基础信息资源分类 新一代电子政务系统通过统一各业务及应用子系统之间的系统和基础信息资源分类,实现了信息资源支撑的统一,从而为各子系统之间的数据关联相互交换提供了统一数据基础。业务数据标准化保障了业务模型在数据层次的统一,确保了业务模型数据标准。统一主界面布局与统一应用层次 在业务数据标准统一基础上,为了确保业务核心模型在电子技术实现后的规范和方便应用,新一代电子政务系统又创新实现了系统布局和展示层的标准,还可以为应用层次划分标准,从而方便用户对系统的规范使用。制定设计模型创新了业务核心模型,提炼了业务标准后,新一代电子政务系统针对各种办公业务资源,从业务工作的实际出发,结合实践经验,又创新制定了基于业务核心模型基础上的业务设计模型,业务设计模型的创新又在于归纳可复用各业务功能模块上面。新一代电子政务系统中,业务设计模型的创新在于提炼可复用各业务功能模块。以往的电子政务建设,模块不清晰,系统建设杂乱无章,很多建设工作重复,这不仅仅耗费了大量资金,而且不利于系统的长远发展和推广应用。新一代电子政务系统从建设的实践中,从功能模块层提炼出了可复用的各业务功能模块,以方便系统的继续发展和建设

Ⅱ 什么是大数据,大数据为什么重要,如何应用大数据

毫无疑问,各行各业因为大幅爆发的数据而正变得蒸蒸日上。在这10年中,几乎所有行业都或多或少的受到这一巨变的影响。科技渗透到各个领域,并且已经成为每个处理单元的必要元素。谈到IT行业,具体来说,软件和自动化是最基本的术语,并且用于处理循环的每个阶段。
相较于稳定性而言,企业更关心的是敏捷性和创新性,通过大数据技术,可以帮助公司及时实现这一愿望。大数据分析不仅使企业能够跟随瞬息万变的潮流而不断更新,而且还具有预测未来发展趋势的能力,使企业占据有竞争力的优势。
让我们找到行业广泛采用大数据的原因:
1.大数据是企业核心竞争力,也是公司的软实力
大数据席卷了全球,并带来了惊人的利益,这一力量无需多说。大数据使IBM、亚马逊等全球顶尖公司受益,这些公司通过利用大数据开发一些前沿的技术,为客户提供高端服务。
“采用大数据,云计算和移动战略的企业发展状况超过没有采用这些技术的同行53%。”——《福布斯》
在戴尔开展的一项调查中显示,采用大数据、云计算以及移动战略的企业中,优势更加明显,也就是,这些企业中有53%采用大数据起步较晚或者尚未采用,在这一结果令人惊讶不已。
虽然大数据尚处于初级阶段,但通过在处理过程中,融合这一理念,将为企业赢得50%的利润。显然,在如今的商业中,大数据显现的惊人优势并不亚于石油或煤炭带来的利益。
2.掌握数据能力,开采“暗数据”
全球著名的咨询公司Gartner公司对黑暗数据的定义是“组织在正常业务活动过程中收集、处理和存储的信息资产,通常不能用于其他目的”。
然而,大数据系统的出现使得这些公司能够将尚未开拓的数据投入使用,并从中提取有意义的信息。过去没有被认可或认为毫无用处的数据突然成为公司的财富,这一点令人惊讶不已。通过大数据分析,这些公司可以加快流程,从而降低运营成本。
3.软件正在吞噬整个世界数据争夺战正在打响
我们目前处于数据驱动型经济中,如果无法分析当前或未来的趋势,任何组织都无法生存下去。抢夺数据已经成为决定下一步行动方案的关键。
客户逐渐成为所有组织的焦点,对于及时满足客户的需求这一任务非常迫切。只有在强大的软件支持下,业务战略才有可能会支撑和加速业务运营。这最终促成了强大的大数据技术的需求,可以以许多方式使组织受益。
4.决策指导更智能更快速更精准
在这个激烈的竞争时代,人人都想脱颖而出。但问题是如何实现这一期望?虽然公司与竞争对手持有相同的运营模式,但公司应当如何展现其独一无二?答案在于公司采用的策略。为了表现优于竞争对手,做出良好和智慧决策的能力在每一步中发挥关键作用。这些决定不仅应该是好的决定,而且应该尽可能做出又快又明智的决定,使公司能够在积极的主动出击。
将大数据分析纳入流程的做法揭示了非结构化数据,从而有助于管理者以系统的方式分析其决策,并在需要时采取替代方法。
5.以用户为中心用户行为数据是营销关键
现在客户有机会随时随地购物,在相关信息帮助下,对于公司需要做出比之前更敏捷的反应这一要求而言具有更大的挑战。但是公司将如何不断地实现这一点呢?答案是借助“大数据”。客户动向是不断变化的,因此营销人员的策略也应该做出相应调整。通过整合过去和实时数据来评估客户的品味和喜好,这样可以使公司采取更快捷的应对措施。
例如,亚马逊通过利用强大的大数据引擎的能力,从一个以产品为基础的公司发展成为囊括1.52亿客户在内的大型市场参与者。亚马逊旨在通过跟踪客户的购买趋势,并为营销人员提供他们即时需要的所有相关信息,从而来为客户服务。此外,亚马逊通过实时监控全球15亿种产品,成功满足了客户的需求。
6.通过利用数据仓库使数据资产变现
这些公司越来越大,因此不同的流程产生不同的数据。资料仓储中的许多重要信息仍然无法访问。然而,公司已经能够使用大数据分析这一武器来挖掘这座大山,让分析师和工程师深入研究,并提供新颖而又有意义的见解。
经过这番分析,有一件事值得肯定的是,这是一个高度数字化和技术驱动时代的开端,并伴随着强大的实时大数据分析能力。

Ⅲ 关于大数据应用有什么例子

  • 大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。

  • 大数据应用案例之:医疗行业

  • Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

  • 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

  • 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

  • 大数据应用案例之:能源行业

  • 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。

  • 有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

  • 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。

Ⅳ 什么叫大数据.有什么用.

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集内合,是需要新处理容模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,简单来说大数据就是海量的数据,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。

大数据的7大特征:海量性,多样性,高速性,可变性,真实性,复杂性,价值性

随着大数据产业的发展,它逐渐从一个高端的、理论性的概念演变为具体的、实用的理念。

很多情况下大数据来源于生活。
比如你点外卖,准备什么时候买,你的位置在哪,商家位置在哪,想吃什么……这都是数据,人一多各种各样的信息就越多,还不断增长,把这些信息集中,就是大数据。

大数据的价值并不是在这些数据上,而是在于隐藏在数据背后的——用户的喜好、习惯还有信息。

Ⅳ 大数据的使用方式有哪些

最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。

  1. 描述型分析:发生了什么?

    这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

    例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

2. 诊断型分析:为什么会发生?

描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

3. 预测型分析:可能发生什么?

预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

4. 指令型分析:需要做什么?

数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

Ⅵ 百度大数据怎么使用

网络的原数据是不可能给你的,所以只有一些接口给你用~~~
现成的网络内大数据,我知道的有容网络迁徙(http://qianxi..com)和网络商情(http://shangqing..com),这两款产品相当的接地气,而且很好用,还是可以在里面挖掘到一些有价值的信息的

Ⅶ 大数据有什么用

我们正处在科技高速发展的时代,如今互联网已经与我们的生活息息相关,我们每天在互联网产生大量的数据,这些数据散落在网络中看似没有怎么作用,但是这些数据经过系统的处理整合起来确实非常有价值的。

一、发展大数据技术可以提高生产力

大数据技术在企业已经成为投入使用很成功的案例,很多应用程序开发商和大型公司都运用大数据技术扩展大数据项目。大数据技术在运用时可以通过数据挖掘知道最需要的数据是哪些,通过这些数据获取更多的生产力,提高生产能力,为企业带来更多的商业价值。目前有很多企业通过数据挖掘分析解决问题,相对来说大数据分析比着传统的数据分析速度更快,更能获取可“回收利用”的信息流量,提高行业内的生产力。

二、发展大数据技术可以改善营销决策

近几年的数据量暴增,数据盈利也很可能成为未来收入的主要来源,大数据技术在海量数据的分析中,寻求到最合适的企业营销策略,通过数据分析给企业带来更明智的策略。

大数据工程师通过对客户的数据精湛分析,分析行业内的流行趋势并且定制出更适合的产品或者服务,通过对定价的检测和分析对客户忠诚度有效评估,一系列的运用大数据及时改善营销决策,给企业带来有价值的数据决策。

三、发展大数据技术的未来优势

大数据行业的兴起,许多开发企业都意识到,想要在行业内不断的发展就要运用大数据技术,提升自身企业的品牌价值,在行业比拼中寻求更多的竞争优势,微软亚马逊等大型跨国公司目前都在采用大数据解决问题,为消费者提供更好的服务。

目前有很多行业和企业都尝到大数据技术的甜头了,未来会有越来越多运用大数据技术的产业,以现在大数据发展的速度来看,2020年大数据的市场规模将达到2030亿美元,很多企业都在期盼大数据项目可以运用的范围更广阔,然后通过运用产生更大的利益空间。

大数据技术能为行业提高生产力、改善营销决策,给企业带来更好的发展前景,目前大数据技术发展虽然在初级阶段,但是发展势头很猛,未来也会有更多的行业领域涉足大数据技术运用,大数据技术未来发展形式一片大好!

当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师,如果想系统的学习编程的可以来我这看看。

对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。

一、ETL研发

企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

二、Hadoop开发

随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。

三、可视化工具开发

可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

四、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

五、数据仓库研究

为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。

六、OLAP开发

OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

七、数据科学研究

数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。

八、数据预测分析

营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

九、企业数据管理

企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。

十、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。成都加米谷大数据培训机构,专注于大数据人才培养。

希望对您有所帮助!~

Ⅷ 大数据可以应用在哪些方面

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(8)大数据使用权扩展阅读:

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:

网络--大数据

Ⅸ 大数据时代,为什么要使用大数据

大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据集合的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)从不同的方面表达了客户的消费过程的方方面面。因此,一般来说,企业用以分析的数据来源越广越全面,其分析的结果就越立体,越接近于真实。因此,大数据分析意味着企业能够从不同来源的数据中获取新的洞察力,并将其与企业业务体系的各个细节相融合,以助力企业在创新或者市场拓展上有所突破。针对“数据量”这个话题,亚马逊CTO Vogels曾经说过,“在运用大数据时,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持。一旦进入大数据的世界,企业的手中将握有无限可能。”可以预料,在不远的未来,企业如何通过抓住用户获取源源不断的数据资产将会是一个新的兵家必争之地。在这个层面上,Facebook、Twitter、Google、Amazon,包括电信运营商等领先企业具有无可比拟的优势。在大数据的领域里是否数据量越大越好?很多时候我们写文章,并不是想要去重复某一个众所周知的事实,而更多的是想从另外一个角度试图去质疑那些已成事实的事实,并不是想要去推翻,而只是去看这个事实是否存在另外的可能性,虽然很多时候我的那些质疑会漏洞百出,并显得幼稚可笑,但我觉得一个事物的健康发展需要不同的声音,而这正是我们写文章的意义所在。所以,我现在问题是,在大数据的领域里是否数据量越大越好?对于这个问题,我觉得应该分两个层面来看,第一个层面是,对大数据这个整体而言,数据肯定是越大越好的,多元的数据能让不同行业,不同组织都可以从大数据中寻找到解决问题的方法,也是基于此,现在越来越多的企业组织通过不同的终端、应用或者其他手段去疯狂地收集多元的数据,大数据让人们能有足够的能力和视野将地球(包括地球上的一切)作为一个整体去看待,这是在从前无法想象的。第二个层面是,对于大数据的具体应用而言,数据量是否越大越好,我却有不同的看法。我的理解是,在大数据的实际应用中你用以分析的数据量越大,你能得到的东西就越多,而至于得到的那些东西是否是你所需要的,或者对你是否有价值的,没有人能保证。就如同树林里有100条路,每条路上都有一些你觉得有意思的东西,如果你有足够的时间,你可以走遍这100条路,收获很多有意思的小东西,但不是每一条路都会让你得到真正有价值的东西。经常做数据分析的朋友应该会有同感,在分析的过程中你会发现不同的数据通过不同的组合导入不同的分析模型会得到很多不同的结果,有时候会有一些很新鲜的结果被发现,这会让你很惊喜,但大部分这些新鲜的结果最后只会出现在你的微博里,而不会出现在正式的分析报告中,因为分析报告是为解决某一具体问题而存在的,旁枝末节太多会显得臃肿且容易混淆。所以,我认为,在大数据的具体应用面前,我们先要做的是把“大数据”这个概念忘掉,我们必须弄清楚到底想从大数据中得到什么,然后带着目的去收集有用的数据,输入至分析模型中,直接导向我们想要的结果。否则你将花费大量时间、资源成本去获取数据,分析数据。我们需要大数据应用是能够帮助解决问题的行为洞察,而不是试图研究每一条能够得到的信息。不得不说,大数据的世界太魔幻了,里面的诱惑很多,如果你不是带着明确的目标去应用,你很有可能被陷入在五光十色的诱惑中无法自拔。即使你走进了一座金山,最后你能带走的最多也只是你能提动的一小口袋。另外,这同时也揭示,为了避免应用者困在“大数据的金山”,大数据必须往下细化,针对不同行业不同领域的特定问题制定不同的解决工具,未来大数据将会遵循消费化模式,核心基础设施将作为服务或应用程序来提供。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837