數學里元次是誰創造的
❶ 誰發明的「元」「次」「根」
是 康熙來。康熙拜比利時的自傳教士為師,學習數學。但聽他講課很不輕松,而且講方程是句子冗長,,所以康熙就建議 ,吧未知數翻譯成「元」最高次翻譯成「次」方程的解翻譯成「根」 康熙創造的幾個學術用語一直沿用至今!
❷ 數學方程式里的元次方等術語是誰創造的
是康熙皇帝啊
❸ 一元二次方程是誰發明的
「一元二次方程新解法」的發明人叫羅伯森,是卡內基梅隆大學華裔數學教授、美國奧數教練,並且羅伯森教授表示:「如果這種方法直到今天都沒有被人類發現的話,我會感到非常驚訝,因為這個課題已經有4000年的歷史了,而且有數十億人都遇到過這個公式和它的證明。」
事實上,在古代,全世界的數學家對一元二次方程都有研究,雖然也沒有一模一樣的方法出現,但是究其內涵,有些古代的解法與羅教授的解法可謂是大同小異。原因也不難想,古代的數學家們沒有韋達,更沒有代數的符號記法,而現如今羅教授的解法確實有「踩肩膀」的嫌疑。
(3)數學里元次是誰創造的擴展閱讀:
古阿拉伯對一元二次方程的解法
阿爾·花剌子模在書中提出一個問題:「一個平方和十個這個平方的根等於三十九個迪拉姆,它是多少?」由於當時代數符號根本沒有發明,古代數學的方程只能靠文字去描述。
設這個數是X,那麼「平方」就是X²,「平方的根」就是將X²在開方,故「平方的根」是指「X」,「十個這個平方的根」就是10X,問題轉化為求方程:X²+10X=39的解。
花剌子模給出的解法是:(注意:下文中的「根」,不指現如今方程的根,而指平方根)
1、將根的個數減半。本題中,是將10減半,故得到5;
2、用5乘自己,再加39,得到64;
3、取64的根,即將64開方,得到8;
4、再從中減去根的個數的一半,即再用8去減5,得到3,方程解完。
❹ 數學方程中:元.次等術語,是誰創業造的
選康熙創造的
❺ 數學方程的" 元""次"是誰 發明的
解:數學方程的元次是康熙首先提出的。
❻ 一元一次方程發明者是誰
一元一次方程式
--- 方程式的由來
十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"
這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".
十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.
由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時
在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這
些學科或概念都只是在極少數人中學習和研究.
十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國
傳教士偉烈亞力,將英國數學家德.摩爾根的<代數初步>譯出. 李.偉
兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數
學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借
用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知
數的等式.
1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳
教士蘭雅合譯英國渥里斯的<代數學>,他們則把"equation"譯為"方程
式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指<九章
算術>中的意思,而方程式是指"今有未知數的等式".華.傅的主張在
很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審
查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次
方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.
既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.
(本文摘自九章出版社之"數學誕生的故事")
❼ 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時回提出的,因當時答沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(7)數學里元次是誰創造的擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
❽ 數學方程中的元次是誰創造的
康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。
比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。
南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。
(8)數學里元次是誰創造的擴展閱讀
南懷仁簡介
南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。
他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。