當前位置:首頁 » 新型創造 » 發明星光

發明星光

發布時間: 2021-02-18 02:55:36

⑴ 愛因斯坦發明有什麼

重要貢獻相對論 狹義相對論的創立: 早在16歲時,愛因斯坦就從書本上了解到光是以很快速度前進的電磁波,他產生了一個想法,如果一個人以光的速度運動,他將看到一幅什麼樣的世界景象呢?他將看不到前進的光,只能看到在空間里振盪著卻停滯不前的電磁場。這種事可能發生嗎? 與此相聯系,他非常想探討與光波有關的所謂以太的問題。以太這個名詞源於希臘,用以代表組成天上物體的基本元素。17世紀,笛卡爾首次將它引入科學,作為傳播光的媒質。其後,惠更斯進一步發展了以太學說,認為荷載光波的媒介物是以太,它應該充滿包括真空在內的全部空間,並能滲透到通常的物質中。與惠更斯的看法不同,牛頓提出了光的微粒說。牛頓認為,發光體發射出的是以直線運動的微粒粒子流,粒子流沖擊視網膜就引起視覺。18世紀牛頓的微粒說佔了上風,然而到了19世紀,卻是波動說佔了絕對優勢,以太的學說也因此大大發展。當時的看法是,波的傳播要依賴於媒質,因為光可以在真空中傳播,傳播光波的媒質是充滿整個空間的以太,也叫光以太。與此同時,電磁學得到了蓬勃發展,經過麥克斯韋、赫茲等人的努力,形成了成熟的電磁現象的動力學理論——電動力學,並從理論與實踐上將光和電磁現象統一起來,認為光就是一定頻率范圍內的電磁波,從而將光的波動理論與電磁理論統一起來。以太不僅是光波的載體,也成了電磁場的載體。直到19世紀末,人們企圖尋找以太,然而從未在實驗中發現以太。 但是,電動力學遇到了一個重大的問題,就是與牛頓力學所遵從的相對性原理不一致。關於相對性原理的思想,早在伽利略和牛頓時期就已經有了。電磁學的發展最初也是納入牛頓力學的框架,但在解釋運動物體的電磁過程時卻遇到了困難。按照麥克斯韋理論,真空中電磁波的速度,也就是光的速度是一個恆量,然而按照牛頓力學的速度加法原理,不同慣性系的光速不同,這就出現了一個問題:適用於力學的相對性原理是否適用於電磁學?例如,有兩輛汽車,一輛向你駛近,一輛駛離。你看到前一輛車的燈光向你靠近,後一輛車的燈光遠離。按照麥克斯韋的理論,這兩種光的速度相同,汽車的速度在其中不起作用。但根據伽利略理論,這兩項的測量結果不同。向你駛來的車將發出的光加速,即前車的光速=光速+車速;而駛離車的光速較慢,因為後車的光速=光速-車速。麥克斯韋與伽利略關於速度的說法明顯相悖。我們如何解決這一分歧呢? 19世紀理論物理學達到了巔峰狀態,但其中也隱含著巨大的危機。海王星的發現顯示出牛頓力學無比強大的理論威力,電磁學與力學的統一使物理學顯示出一種形式上的完整,並被譽為「一座庄嚴雄偉的建築體系和動人心弦的美麗的廟堂」。在人們的心目中,古典物理學已經達到了近乎完美的程度。德國著名的物理學家普朗克年輕時曾向他的老師表示要獻身於理論物理學,老師勸他說:「年輕人,物理學是一門已經完成了的科學,不會再有多大的發展了,將一生獻給這門學科,太可惜了。」 愛因斯坦似乎就是那個將構建嶄新的物理學大廈的人。在伯爾尼專利局的日子裡,愛因斯坦廣泛關注物理學界的前沿動態,在許多問題上深入思考,並形成了自己獨特的見解。在十年的探索過程中,愛因斯坦認真研究了麥克斯韋電磁理論,特別是經過赫茲和洛倫茲發展和闡述的電動力學。愛因斯坦堅信電磁理論是完全正確的,但是有一個問題使他不安,這就是絕對參照系以太的存在。他閱讀了許多著作發現,所有人試圖證明以太存在的試驗都是失敗的。經過研究愛因斯坦發現,除了作為絕對參照系和電磁場的荷載物外,以太在洛倫茲理論中已經沒有實際意義。於是他想到:以太絕對參照系是必要的嗎?電磁場一定要有荷載物嗎? 愛因斯坦喜歡閱讀哲學著作,並從哲學中吸收思想營養,他相信世界的統一性和邏輯的一致性。相對性原理已經在力學中被廣泛證明,但在電動力學中卻無法成立,對於物理學這兩個理論體系在邏輯上的不一致,愛因斯坦提出了懷疑。他認為,相對論原理應該普遍成立,因此電磁理論對於各個慣性系應該具有同樣的形式,但在這里出現了光速的問題。光速是不變的量還是可變的量,成為相對性原理是否普遍成立的首要問題。當時的物理學家一般都相信以太,也就是相信存在著絕對參照系,這是受到牛頓的絕對空間概念的影響。19世紀末,馬赫在所著的《發展中的力學》中,批判了牛頓的絕對時空觀,這給愛因斯坦留下了深刻的印象。 1905年5月的一天,愛因斯坦與一個朋友貝索討論這個已探索了十年的問題,貝索按照馬赫主義的觀點闡述了自己的看法,兩人討論了很久。突然,愛因斯坦領悟到了什麼,回到家經過反復思考,終於想明白了問題。第二天,他又來到貝索家,說:謝謝你,我的問題解決了。原來愛因斯坦想清楚了一件事:時間沒有絕對的定義,時間與光信號的速度有一種不可分割的聯系。他找到了開鎖的鑰匙,經過五個星期的努力工作,愛因斯坦把狹義相對論呈現在人們面前。 1905年6月30日,德國《物理學年鑒》接受了愛因斯坦的論文《論動體的電動力學》,在同年9月的該刊上發表。這篇論文是關於狹義相對論的第一篇文章,它包含了狹義相對論的基本思想和基本內容。狹義相對論所根據的是兩條原理:相對性原理和光速不變原理。愛因斯坦解決問題的出發點,是他堅信相對性原理。伽利略最早闡明過相對性原理的思想,但他沒有對時間和空間給出過明確的定義。牛頓建立力學體系時也講了相對性思想,但又定義了絕對空間、絕對時間和絕對運動,在這個問題上他是矛盾的。而愛因斯坦大大發展了相對性原理,在他看來,根本不存在絕對靜止的空間,同樣不存在絕對同一的時間,所有時間和空間都是和運動的物體聯系在一起的。對於任何一個參照系和坐標系,都只有屬於這個參照系和坐標系的空間和時間。對於一切慣性系,運用該參照系的空間和時間所表達的物理規律,它們的形式都是相同的,這就是相對性原理,嚴格地說是狹義的相對性原理。在這篇文章中,愛因斯坦沒有多討論將光速不變作為基本原理的根據,他提出光速不變是一個大膽的假設,是從電磁理論和相對性原理的要求而提出來的。這篇文章是愛因斯坦多年來思考以太與電動力學問題的結果,他從同時的相對性這一點作為突破口,建立了全新的時間和空間理論,並在新的時空理論基礎上給動體的電動力學以完整的形式,以太不再是必要的,以太漂流是不存在的。 什麼是同時性的相對性?不同地方的兩個事件我們何以知道它是同時發生的呢?一般來說,我們會通過信號來確認。為了得知異地事件的同時性我們就得知道信號的傳遞速度,但如何測出這一速度呢?我們必須測出兩地的空間距離以及信號傳遞所需的時間,空間距離的測量很簡單,麻煩在於測量時間,我們必須假定兩地各有一隻已經對好了的鍾,從兩個鍾的讀數可以知道信號傳播的時間。但我們如何知道異地的鍾對好了呢?答案是還需要一種信號。這個信號能否將鍾對好?如果按照先前的思路,它又需要一種新信號,這樣無窮後退,異地的同時性實際上無法確認。不過有一點是明確的,同時性必與一種信號相聯系,否則我們說這兩件事同時發生是無意義的。 光信號可能是用來對時鍾最合適的信號,但光速非無限大,這樣就產生一個新奇的結論,對於靜止的觀察者同時的兩件事,對於運動的觀察者就不是同時的。我們設想一個高速運行的列車,它的速度接近光速。列車通過站台時,甲站在站台上,有兩道閃電在甲眼前閃過,一道在火車前端,一道在後端,並在火車兩端及平台的相應部位留下痕跡,通過測量,甲與列車兩端的間距相等,得出的結論是,甲是同時看到兩道閃電的。因此對甲來說,收到的兩個光信號在同一時間間隔內傳播同樣的距離,並同時到達他所在位置,這兩起事件必然在同一時間發生,它們是同時的。但對於在列車內部正中央的乙,情況則不同,因為乙與高速運行的列車一同運動,因此他會先截取向著他傳播的前端信號,然後收到從後端傳來的光信號。對乙來說,這兩起事件是不同時的。也就是說,同時性不是絕對的,而取決於觀察者的運動狀態。這一結論否定了牛頓力學中引以為基礎的絕對時間和絕對空間框架。 相對論認為,光速在所有慣性參考系中不變,它是物體運動的最大速度。由於相對論效應,運動物體的長度會變短,運動物體的時間膨脹。但由於日常生活中所遇到的問題,運動速度都是很低的(與光速相比),看不出相對論效應。 愛因斯坦在時空觀的徹底變革的基礎上建立了相對論力學,指出質量隨著速度的增加而增加,當速度接近光速時,質量趨於無窮大。他並且給出了著名的質能關系式:E=mc^2,質能關系式對後來發展的原子能事業起到了指導作用。 廣義相對論的建立: 1905年,愛因斯坦發表了關於狹義相對論的第一篇文章後,並沒有立即引起很大的反響。但是德國物理學的權威人士普朗克注意到了他的文章,認為愛因斯坦的工作可以與哥白尼相媲美,正是由於普朗克的推動,相對論很快成為人們研究和討論的課題,愛因斯坦也受到了學術界的注意。 1907年,愛因斯坦聽從友人的建議,提交了那篇著名的論文申請聯邦工業大學的編外講師職位,但得到的答復是論文無法理解。雖然在德國物理學界愛因斯坦已經很有名氣,但在瑞士,他卻得不到一個大學的教職,許多有名望的人開始為他鳴不平,1908年,愛因斯坦終於得到了編外講師的職位,並在第二年當上了副教授。1912年,愛因斯坦當上了教授,1913年,應普朗克之邀擔任新成立的威廉皇帝物理研究所所長和柏林大學教授。 在此期間,愛因斯坦在考慮將已經建立的相對論推廣,對於他來說,有兩個問題使他不安。第一個是引力問題,狹義相對論對於力學、熱力學和電動力學的物理規律是正確的,但是它不能解釋引力問題。牛頓的引力理論是超距的,兩個物體之間的引力作用在瞬間傳遞,即以無窮大的速度傳遞,這與相對論依據的場的觀點和極限的光速沖突。第二個是非慣性系問題,狹義相對論與以前的物理學規律一樣,都只適用於慣性系。但事實上卻很難找到真正的慣性系。從邏輯上說,一切自然規律不應該局限於慣性系,必須考慮非慣性系。狹義相對論很難解釋所謂的雙生子佯謬,該佯謬說的是,有一對孿生兄弟,哥在宇宙飛船上以接近光速的速度做宇宙航行,根據相對論效應,高速運動的時鍾變慢,等哥哥回來,弟弟已經變得很老了,因為地球上已經經歷了幾十年。而按照相對性原理,飛船相對於地球高速運動,地球相對於飛船也高速運動,弟弟看哥哥變年輕了,哥哥看弟弟也應該年輕了。這個問題簡直沒法回答。實際上,狹義相對論只處理勻速直線運動,而哥哥要回來必須經過一個變速運動過程,這是相對論無法處理的。正在人們忙於理解相對狹義相對論時,愛因斯坦正在接受完成廣義相對論。 1907年,愛因斯坦撰寫了關於狹義相對論的長篇文章《關於相對性原理和由此得出的結論》,在這篇文章中愛因斯坦第一次提到了等效原理,此後,愛因斯坦關於等效原理的思想又不斷發展。他以慣性質量和引力質量成正比的自然規律作為等效原理的根據,提出在無限小的體積中均勻的引力場完全可以代替加速運動的參照系。愛因斯坦並且提出了封閉箱的說法:在一封閉箱中的觀察者,不管用什麼方法也無法確定他究竟是靜止於一個引力場中,還是處在沒有引力場卻在作加速運動的空間中,這是解釋等效原理最常用的說法,而慣性質量與引力質量相等是等效原理一個自然的推論。 1915年11月,愛因斯坦先後向普魯士科學院提交了四篇論文,在這四篇論文中,他提出了新的看法,證明了水星近日點的進動,並給出了正確的引力場方程。至此,廣義相對論的基本問題都解決了,廣義相對論誕生了。1916年,愛因斯坦完成了長篇論文《廣義相對論的基礎》,在這篇文章中,愛因斯坦首先將以前適用於慣性系的相對論稱為狹義相對論,將只對於慣性系物理規律同樣成立的原理稱為狹義相對性原理,並進一步表述了廣義相對性原理:物理學的定律必須對於無論哪種方式運動著的參照系都成立。 愛因斯坦的廣義相對論認為,由於有物質的存在,空間和時間會發生彎曲,而引力場實際上是一個彎曲的時空。愛因斯坦用太陽引力使空間彎曲的理論,很好地解釋了水星近日點進動中一直無法解釋的43秒。廣義相對論的第二大預言是引力紅移,即在強引力場中光譜向紅端移動,20年代,天文學家在天文觀測中證實了這一點。廣義相對論的第三大預言是引力場使光線偏轉,。最靠近地球的大引力場是太陽引力場,愛因斯坦預言,遙遠的星光如果掠過太陽表面將會發生一點七秒的偏轉。1919年,在英國天文學家愛丁頓的鼓動下,英國派出了兩支遠征隊分赴兩地觀察日全食,經過認真的研究得出最後的結論是:星光在太陽附近的確發生了一點七秒的偏轉。英國皇家學會和皇家天文學會正式宣讀了觀測報告,確認廣義相對論的結論是正確的。會上,著名物理學家、皇家學會會長湯姆孫說:「這是自從牛頓時代以來所取得的關於萬有引力理論的最重大的成果」,「愛因斯坦的相對論是人類思想最偉大的成果之一」。愛因斯坦成了新聞人物,他在1916年寫了一本通俗介紹相對論的書《狹義與廣義相對論淺說》,到1922年已經再版了40次,還被譯成了十幾種文字,廣為流傳。 相對論的意義: 狹義相對論和廣義相對論建立以來,已經過去了很長時間,它經受住了實踐和歷史的考驗,是人們普遍承認的真理。相對論對於現代物理學的發展和現代人類思想的發展都有巨大的影響。 相對論從邏輯思想上統一了經典物理學,使經典物理學成為一個完美的科學體系。狹義相對論在狹義相對性原理的基礎上統一了牛頓力學和麥克斯韋電動力學兩個體系,指出它們都服從狹義相對性原理,都是對洛倫茲變換協變的,牛頓力學只不過是物體在低速運動下很好的近似規律。廣義相對論又在廣義協變的基礎上,通過等效原理,建立了局域慣性長與普遍參照系數之間的關系,得到了所有物理規律的廣義協變形式,並建立了廣義協變的引力理論,而牛頓引力理論只是它的一級近似。這就從根本上解決了以前物理學只限於慣性系數的問題,從邏輯上得到了合理的安排。相對論嚴格地考察了時間、空間、物質和運動這些物理學的基本概念,給出了科學而系統的時空觀和物質觀,從而使物理學在邏輯上成為完美的科學體系。 狹義相對論給出了物體在高速運動下的運動規律,並提示了質量與能量相當,給出了質能關系式。這兩項成果對低速運動的宏觀物體並不明顯,但在研究微觀粒子時卻顯示了極端的重要性。因為微觀粒子的運動速度一般都比較快,有的接近甚至達到光速,所以粒子的物理學離不開相對論。質能關系式不僅為量子理論的建立和發展創造了必要的條件,而且為原子核物理學的發展和應用提供了根據。 對於愛因斯坦引入的這些全新的概念,當時地球上大部分物理學家,其中包括相對論變換關系的奠基人洛侖茲,都覺得難以接受。甚至有人說「當時全世界只有兩個半人懂相對論」。舊的思想方法的障礙,使這一新的物理理論直到一代人之後才為廣大物理學家所熟悉,就連瑞典皇家科學院,1922年把諾貝爾物理學獎授予愛因斯坦時,也只是說「由於他對理論物理學的貢獻,更由於他發現了光電效應的定律。」對愛因斯坦的諾貝爾物理學獎頒獎辭中竟然對於愛因斯坦的相對論隻字未提。 E=mc^2 物質不滅定律,說的是物質的質量不滅;能量守恆定律,說的是物質的能量守恆。(信息守恆定律) 雖然這兩條偉大的定律相繼被人們發現了,但是人們以為這是兩個風馬牛不相關的定律,各自說明了不同的自然規律。甚至有人以為,物質不滅定律是一條化學定律,能量守恆定律是一條物理定律,它們分屬於不同的科學范疇。 愛因斯坦認為,物質的質量是慣性的量度,能量是運動的量度;能量與質量並不是彼此孤立的,而是互相聯系的,不可分割的。物體質量的改變,會使能量發生相應的改變;而物體能量的改變,也會使質量發生相應的改變。 在狹義相對論中,愛因斯坦提出了著名的質能公式:E=mc^2 (這里的E代表物體的能量,m代表物體的質量,c代表光的速度,即3×10^8m/s)。 愛因斯坦的理論,最初受到許多人的反對,就連當時一些著名物理學家也對這位年青人的論文表示懷疑。然而,隨著科學的發展,大量的科學實驗證明愛因斯坦的理論是正確的,愛因斯坦才一躍而成為世界著名的科學家,成為20世紀世界最偉大的科學家。 愛因斯坦的質能關系公式,正確地解釋了各種原子核反應:就拿 氦 4 來說,它的原子核是由2個質子和2個中子組成的。照理,氦4原子核的質量就等於2個質子和2個中子質量之和。實際上,這樣的算術並不成立,氦核的質量比2個質子、2個中子質量之和少了0.0302原子質量單位[57]!這是為什麼呢?因為當2個氘[]核(每個氘核都含有1個質子、1個中子)聚合成1個氦4原子核時,釋放出大量的原子能。生成1克氦4原子時,大約放出2.7×10^12焦耳的原子能。正因為這樣,氦4原子核的質量減少了。 這個例子生動地說明:在2個氘原子核聚合成1個氦4原子核時,似乎質量並不守恆,也就是氦4原子核的質量並不等於2個氘核質量之和。然而,用質能關系公式計算,氦4原子核失去的質量,恰巧等於因反應時釋放出原子能而減少的質量! 這樣一來,愛因斯坦就從更新的高度,闡明了物質不滅定律和能量守恆定律的實質,指出了兩條定律之間的密切關系,使人類對大自然的認識又深了一步。 光電效應 光照射到某些物質上,引起物質的電性質發生變化。這類光致電變的現象被人們統稱為光電效應(Photoelectric effect)。 光電效應分為光電子發射、光電導效應和光生伏特效應。前一種現象發生在物體表面,又稱外光電效應。後兩種現象發生在物體內部,稱為內光電效應。 赫茲於1887年發現光電效應,愛因斯坦第一個成功的解釋了光電效應。金屬表面在光輻照作用下發射電子的效應,發射出來的電子叫做光電子。光波長小於某一臨界值時方能發射電子,即極限波長,對應的光的頻率叫做極限頻率。臨界值取決於金屬材料,而發射電子的能量取決於光的波長而與光強度無關,這一點無法用光的波動性解釋。還有一點與光的波動性相矛盾,即光電效應的瞬時性,按波動性理論,如果入射光較弱,照射的時間要長一些,金屬中的電子才能積累住足夠的能量,飛出金屬表面。可事實是,只要光的頻率高於金屬的極限頻率,光的亮度無論強弱,光子的產生都幾乎是瞬時的,不超過十的負九次方秒。正確的解釋是光必定是由與波長有關的嚴格規定的能量單位(即光子或光量子)所組成。 光電效應里,電子的射出方向不是完全定向的,只是大部分都垂直於金屬表面射出,與光照方向無關 ,光是電磁波,但是光是高頻震盪的正交電磁場,振幅很小,不會對電子射出方向產生影響。 1905年,愛因斯坦提出光子假設,成功解釋了光電效應,因此獲得1921年諾貝爾物理獎。 「上帝不擲骰子」 愛因斯坦曾經是量子力學的催生者之一,但是他不滿意量子力學的後續發展,愛因斯坦始終認為「量子力學(以玻恩為首的哥本哈根詮釋:「基本上,量子系統的描述是機率的。一個事件的機率是波函數的絕對值平方。」)不完整」,但苦於沒有好的解說樣板,也就有了著名的「上帝不擲骰子」的否定式吶喊!其實,愛因斯坦的直覺是對的,決定論的量子詮釋才是「量子論詮釋」的本真、根源。愛因斯坦到過世前都沒有接受量子力學是一個完備的理論。愛因斯坦還有另一個名言:「月亮是否只在你看著他的時候才存在?」 宇宙常數 愛因斯坦在提出相對論的時候,曾將宇宙常數(為了解釋物質密度不為零的靜態宇宙的存在﹐他在引力場方程中引進一個與度規張量成比例的項﹐用符號Λ 表示。該比例常數很小﹐在銀河系尺度范圍可忽略不計。只在宇宙尺度下﹐Λ 才可能有意義﹐所以叫作宇宙常數。即所謂的反引力的固定數值)代入他的方程。他認為,有一種反引力,能與引力平衡,促使宇宙有限而靜態。當哈勃得意洋洋的在天文望遠鏡展示給愛因斯坦看時,愛因斯坦慚愧極了,他說:「這是我一生所犯下的最大錯誤。」宇宙是膨脹著的!哈勃等認為,反引力是不存在的,由於星系間的引力,促使膨脹速度越來越慢。 那麼,愛因斯坦就完全錯了嗎?不。星系間有一種扭旋的力,促使宇宙不斷膨脹,即暗能量。70億年前,它們「戰勝」了暗物質,成為宇宙的主宰。最新研究表明,按質量成份(只算實質量,不算虛物質)計算,暗物質和暗能量約占宇宙96%。看來,宇宙將不斷加速膨脹,直至解體死亡。(目前也有其它說法,爭議不休)。宇宙常數雖存在,但反引力的值遠超過引力。也難怪這位倔強的物理學家與波爾在量子力學的爭論:「上帝是不擲骰子的!」(不要指揮上帝如何決定宇宙的命運) 林德饒有風趣的說:「現在,我終於明白,為什麼他(愛因斯坦)這么喜歡這個理論,多年後依然研究宇宙常數,宇宙常數依然是當今物理學最大的疑問之一。」

⑵ 愛因斯坦的發明

他該是個理論家 沒有他的理論 發明家們無從下手。
愛因斯坦」無處不在

毫不誇張地說,根據愛因斯坦創立的科學理論而衍生出的發明創造,幾乎涵蓋了現代文明的每一個角落。電腦游戲、公共汽車、數碼照相機……我們衣食住行的每個細節都閃現著愛因斯坦的影子。

煙霧探測器

這里用一個假設的「你」做比喻。早晨當你從下榻的賓館起來,走出房間准備晨練時,請注意你頭上的煙霧探測器。它利用放射性物質鎇-241釋放出能量,產生一小束帶電粒子。一旦發生意外,從火焰里冒出來的煙霧與粒子束發生反應,觸動警報器自動拉響。

由於鎇的原子核不穩定,一旦裂開,質量似乎就消失了一些,因為碎片的質量比原來的原子核小。其實,鎇原子的質量根本沒有消失。這是愛因斯坦告訴我們的。

平坦的公路

回到家後你要開車去上班,你車輪下的平坦公路里也刻著愛因斯坦的功勞。在愛因斯坦的博士論文中探討了在不同溶液中測量分子的新方法,這些方法後來成為膠體化學的基本方法。建材工程師在建造公路時,就是利用他的研究成果。

電腦顯示器

來到辦公室,你打開電腦開始工作。在短促的瞬間,電子正從顯像管的陰極發射出來,好像在飛馳過程中獲得了能量,積聚在顯示屏上———這正好符合愛因斯坦的狹義相對論。發明電腦顯示器的工程師必須使顯示器符合「相對論效應」,否則控制電子飛馳的磁鐵就會在顯示屏上產生模糊圖像,使你無法工作,當然,精彩的電腦游戲也玩不起來了。

精準的激光

下班後你到超市購物,你手裡的每一件商品條形碼也得益於愛因斯坦的激光理論,只有激光才能准確讀出條形碼中的編碼。

太陽能電池

假如你想用太陽能光電池為自己的居室提供能量。這些光電池能夠把太陽能轉成電能,愛因斯坦在90年前發表的一篇論文里就首次正確地分析過這一轉換原理。

他發現光子具有能量。某些光子攜帶的能量足以克服將電子集中於某種金屬的「粘性」,這就是著名的光電效應。

數碼相機

星期天,你會和家人輕松郊遊。當你打開數碼相機,准備攝下家人溫馨的笑容時,要先感謝愛因斯坦。從鏡頭飛進來的光子會把半導體里的電子擠走,這同樣利用了寶貴的光電效應。

葯物

倘若你身體有點小毛病,需要葯物調理。許多葯物製造得益於愛因斯坦那篇有關布朗運動的論文。

英國植物學家羅伯特·布朗最先觀察到,懸浮的液體中的微粒永遠不停地做無規則運動。愛因斯坦則利用布朗運動創立了將微觀數量和宏觀數量聯系在一起的統計法。

直到今天,這些統計法仍是全世界葯劑師必須遵循的配比法則。

全球定位系統

萬一彩票中了大獎,得意忘形的你不幸成為尋人啟事中主角,那也沒有關系,你身上攜帶的GPS(全球定位系統)能幫助你與搜索人員取得聯系。100年前愛因斯坦發現,如果想把發生在不同地點的多個事件聯系在一起考慮,那麼傳統的時間概念就不夠充分。

雖然全球定位系統衛星上安裝了精確的原子鍾,但是,如果沒有地面原子鍾對衛星原子鍾的時間調整,定位系統每天發給地面的信號就會出現1.6千米的偏差。

控制X射線的能量

你長了一個腫瘤,幸虧是良性的,但因長在胸腺上,手術後需要放射治療。醫生在為你實施放射治療前,需要估計X射線可能對你細胞造成的傷害,根據就是愛因斯坦的E=mc2。

這同樣是100年前愛因斯坦的重大發現:任何質量都可以被看作是被壓縮的能量。要想知道某一質量能夠產生多少能量,可以把消失的質量乘以光速的平方——那絕對是一個天文數字!據此理論造出原子彈、氫彈的同時,也治好了你的胸腺瘤。

假如沒有愛因斯坦

假如沒有愛因斯坦,他的理論(特別是相對論)會在何時問世?對這樣的假設,肯定是仁者見仁,智者見智。著名天文物理學家馬丁·雷斯爵士認為,如果沒有愛因斯坦,無疑會滯後現代文明的腳步。

⑶ 伽利略發明了什麼

伽利略在科學實驗的基礎上融匯貫通了數學、物理學和天文學三門知識,擴大、加深並改變了人類對物質運動和宇宙的認識。

伽利略從實驗中總結出自由落體定律、慣性定律和伽利略相對性原理等。從而推翻了亞里士多德物理學的許多臆斷,奠定了經典力學的基礎,反駁了托勒密的地心體系,有力地支持了哥白尼的日心學說 。

他以系統的實驗和觀察推翻了純屬思辨傳統的自然觀,開創了以實驗事實為根據並具有嚴密邏輯體系的近代科學。

(3)發明星光擴展閱讀:

科學地位:

伽利略對17世紀的自然科學和世界觀的發展起了重大作用 。

從伽利略、牛頓開始的實驗科學,是近代自然科學的開始。

伽利略是近代實驗科學的奠基者之一。

愛因斯坦曾這樣評價:「伽利略的發現,以及他所用的科學推理方法,是人類思想史上最偉大的成就之一,而且標志著物理學的真正的開端!」

⑷ 愛因斯坦的發明有哪些

毫不誇張地說,根據愛因斯坦創立的科學理論而衍生出的發明創造,幾乎涵蓋了現代文明的每一個角落。電腦游戲、公共汽車、數碼照相機……我們衣食住行的每個細節都閃現著愛因斯坦的影子。

煙霧探測器

這里用一個假設的「你」做比喻。早晨當你從下榻的賓館起來,走出房間准備晨練時,請注意你頭上的煙霧探測器。它利用放射性物質鎇-241釋放出能量,產生一小束帶電粒子。一旦發生意外,從火焰里冒出來的煙霧與粒子束發生反應,觸動警報器自動拉響。

由於鎇的原子核不穩定,一旦裂開,質量似乎就消失了一些,因為碎片的質量比原來的原子核小。其實,鎇原子的質量根本沒有消失。這是愛因斯坦告訴我們的。

平坦的公路

回到家後你要開車去上班,你車輪下的平坦公路里也刻著愛因斯坦的功勞。在愛因斯坦的博士論文中探討了在不同溶液中測量分子的新方法,這些方法後來成為膠體化學的基本方法。建材工程師在建造公路時,就是利用他的研究成果。

電腦顯示器

來到辦公室,你打開電腦開始工作。在短促的瞬間,電子正從顯像管的陰極發射出來,好像在飛馳過程中獲得了能量,積聚在顯示屏上———這正好符合愛因斯坦的狹義相對論。發明電腦顯示器的工程師必須使顯示器符合「相對論效應」,否則控制電子飛馳的磁鐵就會在顯示屏上產生模糊圖像,使你無法工作,當然,精彩的電腦游戲也玩不起來了。

精準的激光

下班後你到超市購物,你手裡的每一件商品條形碼也得益於愛因斯坦的激光理論,只有激光才能准確讀出條形碼中的編碼。

太陽能電池

假如你想用太陽能光電池為自己的居室提供能量。這些光電池能夠把太陽能轉成電能,愛因斯坦在90年前發表的一篇論文里就首次正確地分析過這一轉換原理。

他發現光子具有能量。某些光子攜帶的能量足以克服將電子集中於某種金屬的「粘性」,這就是著名的光電效應。

數碼相機

星期天,你會和家人輕松郊遊。當你打開數碼相機,准備攝下家人溫馨的笑容時,要先感謝愛因斯坦。從鏡頭飛進來的光子會把半導體里的電子擠走,這同樣利用了寶貴的光電效應。

葯物

倘若你身體有點小毛病,需要葯物調理。許多葯物製造得益於愛因斯坦那篇有關布朗運動的論文。

英國植物學家羅伯特·布朗最先觀察到,懸浮的液體中的微粒永遠不停地做無規則運動。愛因斯坦則利用布朗運動創立了將微觀數量和宏觀數量聯系在一起的統計法。

直到今天,這些統計法仍是全世界葯劑師必須遵循的配比法則。

全球定位系統

萬一彩票中了大獎,得意忘形的你不幸成為尋人啟事中主角,那也沒有關系,你身上攜帶的GPS(全球定位系統)能幫助你與搜索人員取得聯系。100年前愛因斯坦發現,如果想把發生在不同地點的多個事件聯系在一起考慮,那麼傳統的時間概念就不夠充分。

雖然全球定位系統衛星上安裝了精確的原子鍾,但是,如果沒有地面原子鍾對衛星原子鍾的時間調整,定位系統每天發給地面的信號就會出現1.6千米的偏差。

控制X射線的能量

你長了一個腫瘤,幸虧是良性的,但因長在胸腺上,手術後需要放射治療。醫生在為你實施放射治療前,需要估計X射線可能對你細胞造成的傷害,根據就是愛因斯坦的E=mc2。

這同樣是100年前愛因斯坦的重大發現:任何質量都可以被看作是被壓縮的能量。要想知道某一質量能夠產生多少能量,可以把消失的質量乘以光速的平方——那絕對是一個天文數字!據此理論造出原子彈、氫彈的同時,也治好了你的胸腺瘤。

假如沒有愛因斯坦

假如沒有愛因斯坦,他的理論(特別是相對論)會在何時問世?對這樣的假設,肯定是仁者見仁,智者見智。著名天文物理學家馬丁·雷斯爵士認為,如果沒有愛因斯坦,無疑會滯後現代文明的腳步。
e=mc方就是相對論

⑸ 愛迪生發明電燈的主要成就

愛迪生小時候把蠟燭放在鏡子前發現亮了許多,受啟發,發明了燈絲。 准確的說,電燈不是愛迪生發明的,它是後來有人在愛迪生的基礎上改造而成的。愛迪生發明的是燈絲。 愛迪生還發明了:留聲機 他是鐵路工人的孩子,小學未讀完就輟學,在火車上賣報度日。愛迪生是一個異常勤奮的人,喜歡做各種實驗,製作出許多巧妙機械。他對電器特別感興趣,自從法拉第發明電機後,愛迪生就決心製造電燈,為人類帶來光明。 愛迪生在認真總結了前人製造電燈的失敗經驗後,制定發詳細的試驗計劃,分別在兩方面進行試驗:一是分類試驗1600多種不同耐熱的材料;二是改進抽空設備,使燈泡有高真空度。他還對新型發電機和電路分路系統等進行了研究。 愛迪生將1600多種耐熱發光材料逐一地試驗下來,唯獨白金絲性能量好,但白金價格貴得驚人,必須找到更合適的材料來代替。1879年,幾經實驗,愛迪生最後決定用炭絲來作燈絲。他把一截棉絲撒滿炭粉,彎成馬蹄形,裝到坩鍋中加熱,做成燈絲,放到燈泡中,再用抽氣機抽去燈泡內空氣,電燈亮了,竟能連續使用45個小時。就這樣,世界上第一批炭絲的白熾燈問世了。1879年除夕,愛迪生電燈公司所在地洛帕克街燈火通明。 為了研製電燈,愛迪生在實驗室里常常一天工作十幾個小時,有時連續幾天試驗,發明炭絲作燈絲後,他又接連試驗了6000多種植物纖維,最後又選用竹絲,通過高溫密閉爐燒焦,再加工,得到炭化竹絲,裝到燈泡里,再次提高了燈泡的真空度,電燈竟可連續點亮1200個小時。電燈的發明,曾使煤氣股票3天內猛跌百分之十二。

隨便選一個吧!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!參考資料:??????????????????????

⑹ 莫里斯·沃德發明的防火材料星光是真的嗎

從媒體的報道來看應該是真的。但是從報道來看,星光的製作成本並不高,沃德可以自行投資生產並銷售(像老乾媽一樣),然後逐步擴大產量。出售專利也是一種途徑,不過沃德可能覺得不劃算。

⑺ 光的歷史起源

659655724724734734765734731

⑻ 關於在書上看到的一種材料,叫「星光」

20多年前,莫里斯•沃德發明了「星光」,薄薄一層塗於蛋殼表面,雞蛋就能忍受噴燈數分鍾炙烤,甚至不會變熟。然而,直到沃德本人去世,這種神奇的防火材料也沒能得到應用。原因何在?
經過了1993年3月在《明日世界》上的精彩演示,莫里斯·沃德的命運似乎將被改變。圖片來源:新科學家
(文/ Richard Fisher)雞蛋備妥,莫里斯·沃德(Maurice Ward)已經檢視無誤。他把雞蛋托到製作人面前,攝像機隨即開拍。
「這可不是一枚普通的雞蛋,」節目主持人彼得·邁凱恩(Peter
McCann)宣布。雞蛋表面正有一盞噴燈徒勞地烘烤著。照理說,只要在烈焰下炙烤數秒,蛋殼就該碎裂。但現在幾分鍾過去了,雞蛋依然完好無損。邁凱恩將
雞蛋拿起托在掌中說,「只是稍微有點發熱而已」。接著他敲開蛋殼,液態的蛋黃淌了下來,「里頭還一點兒都沒熟呢」。
這一幕發生在1990年3月,地點是英國電視節目《明日世界》(Tomorrow』s World)的演播室。經過這番精彩的演示,沃德的命運似乎將被改變。
那枚雞蛋本身並沒有什麼特別,它之所以能抵擋噴燈的高熱,全靠沃德在它表面塗抹的那一層薄薄的白色物質。沃德是一位業余發明家,來自英格蘭北部的哈特爾普爾,沒有受過科學訓練。他將自己發明的這種東西命名為「星光」(Starlite)。
據邁凱恩介紹,星光可以方便地塗抹在飛機、電器、木門及塑料線上——凡是需要防範熱氣和火焰的地方都行。看來,沃德不久就要致富了。果然,很快就有
各色人等瞄上了星光,登門接洽,其中有科學家,有跨國公司,甚至還有美國國家航空航天局(NASA)。有買主開出百萬美元的合約。但是後來,事情卻沒了下
文。
難道是沃德愚弄了電視製作人?難道所謂的星光是一場騙局?所有證據都表明並非如此。節目播出之後,英美兩國的政府實驗室都開展了測試,證明星光是真
傢伙。高層人士也不吝贊譽,其中包括英國國防部前任科學顧問、化學家羅納德·梅森(Ronald
Mason)。他在1993年告訴一名電視記者:「我剛聽說莫里斯的時候十分懷疑,但現在我深信他絕無虛言。」
在接下來的20年裡,沃德又製作了幾份樣品,但始終不肯透露配方。到了2011年5月,他去世了。
星光到底是怎麼回事?這個問題的答案,是一個夾雜著挫折、權力和保密的故事,它給頭腦發熱的人澆了一盆冷水,提醒他們巧思和創意未必就能帶來商業成功。除此之外還有幾個誘人的問題:這種材料的原理是什麼?它真算得上是重大突破嗎?最重要的是,沃德有沒有把它的秘密帶進墳墓?
沒有人知道這東西是怎麼發明出來的,我們知道的是,沃德對科學完全是個外行。他最早是個理發師,據說上世紀80年代在英格蘭北部經營過一小間塑料公
司。除此之外,他還是一名英倫怪客,留著一把白色絡腮胡,系著領結,思維發散。他對幾名記者說,他在廚房的桌子上用食品加工機合成了幾批星光,但當其中一人問他這種神奇材料的配方時,他的回答卻玄虛得很,甚至有點惡作劇——「哦,也就是一點點麵粉加發酵粉而已。」

⑼ 科學家如何發明了夜視儀

夜視儀按原理來分,有主動式和被動式兩種。主動夜視系統是利用非可視光作光源,它有兩種工作方式:一種是區域發光器,如紅外燈;另一種是採用窄光束控制掃描視場,接收反射非可視光在監視器熒光屏上同步顯示圖像,所以這種夜視儀也可稱為光夜視儀,熱成像、紅外、紫外、X射線等等都屬於這類。被動夜視系統是利用例如月光、星光、天空輝光、夜天光、熱和一切很微弱的自然光線,加以放大增強達到可視的目的。這類夜視儀也成為微光夜視儀,用於電視上叫微光攝象機。它與一般攝象機怎麼劃分呢?目前還沒有一個精確的標准。一般用靈敏度來定義:任何攝象機,其靈敏度超過普通硫化銻光導管電視攝象機時,均成為低照度攝像機或微光攝像機。

另外,在低照度情況下,用人眼直接觀察的叫夜視鏡,利用監視器進行觀察的叫微光攝像機,微光攝像機還有彩色和黑白之分。

夜視儀的工作原理:

人眼能直接觀察到景物的必要條件是有光線,但這並不充分。充分條件是必須要一定的環境照度和可見光。夜視技術就是圍繞解決這兩個問題來作文章的。

光也是一種電磁波,它是一種頻率很高、波長很小的電磁波。它的波長一般在10到10E+6納米(1納米相當於10E-9米)之間,而可見光僅占其中的一小部分,約在390到776納米之間。390納米以下為紫外線,776納米以上為紅外線。

人們如何將不可見光轉為可見光,將低照度提高呢?這就得從光的一種特性說起。十九世紀愛爾蘭人史密斯發現了一種光電效應,這就使光和電互相轉換成為可能。而在科學技術高度發展的今天,將電信號進行變頻、變相和放大,並不是一件難事。只要把景物各部分明暗不同的亮度轉變成大小不同的電信號(電流和電壓),然後通過掃描技術,將光圖像轉變為電圖像,這個過程就叫攝像。最後利用顯像技術將電圖像還原為光圖像,以達到觀察的目的。就以紅外夜視儀為例,使用紅外燈照在目標上,因為紅外光是不可視光,可以不暴露自己,然後通過紅外變像管將不可視的電像轉變成人眼可見的光學像,達到觀察的目的。熱成像是利用目標與周圍環境之間由於溫度或發射率的差異所產生的熱對比度進行成像。由於熱對比度的差異而把紅外輻射能量密度分布圖顯示出來,成為熱像,再通過熱像將紅外圖像變為可見光圖像。

微光夜視儀是將微弱的自然光圖像通過像增強器轉變為增強了百倍甚至幾萬倍的電子圖像,再將增強的電子圖像轉變成為可視的光學圖像。

⑽ 望遠鏡是怎麼發明的

發明望遠鏡 伽利略在帕多瓦大學工作的18年間,最初把主要精力放在他一直感興趣的力學研究方面,他發現了物理上重要的現象——物體運動的慣性;做過有名的斜面實踐,總結了物體下落的距離與所經過的時間之間的數量關系;他還研究了炮彈的運動,奠定了拋物線理論的基礎;關於加速度這個概念,也是他第一個明確提出的:甚至為了測量病人發燒時體溫的升高,這位著名的物理學家還在1593年發明了第一支空氣溫度計……但是,一個偶然的事件,使伽利略改變了研究方向。他從力學和物理學的研究轉向廣漠無垠的茫茫太空了。伽利略望遠鏡 那是1609年6月,伽利略聽到一個消息,說是荷蘭有個眼鏡商人利帕希在一偶爾的發現中,用一種鏡片看見了遠處肉眼看不見的東西。「這難道不正是我需要的千里眼嗎?」伽利略非常高興。不久,伽利略的一個學生從巴黎來信,進一步證實這個消息的准確性,信中說盡管不知道利帕希是怎樣做的,但是這個眼鏡商人肯定是製造了一個鏡管,用它可以使物體放大許多倍。 「鏡管!」伽利略把來信翻來覆去看了好幾遍,急忙跑進他的實驗室。他找來紙和鵝管筆,開始畫出一張又一張透鏡成像的示意圖。伽利略由鏡管這個提示受到啟發,看來鏡管能夠放大物體的秘密在於選擇怎樣的透鏡,特別是凸透鏡和凹透鏡如何搭配。他找來有關透鏡的資料,不停地進行計算,忘記了暮色爬上窗戶,也忘記了曙光是怎樣射進房間。 整整一個通宵,伽利略終於明白,把凸透鏡和凹透鏡放在一個適當的距離,就像那個荷蘭人看見的那樣,遙遠的肉眼看不見的物體經過放大也能看清了。 伽利略非常高興。他顧不上休息,立即動手磨製鏡片,這是一項很費時間又需要細心的活兒。他一連幹了好幾天,磨製出一對對凸透鏡和凹透鏡,然後又製作了一個精巧的可以滑動的雙層金屬管。現在,該試驗一下他的發明了。 伽利略小心翼翼地把一片大一點的凸透鏡安在管子的一端,另一端安上一片小一點的凹透鏡,然後把管子對著窗外。當他從凹透鏡的一端望去時,奇跡出現了,那遠處的教堂彷彿近在眼前,可以清晰地看見鍾樓上的十字架,甚至連一隻在十字架上落腳的鴿子也看得非常逼真。 伽利略製成望遠鏡的消息馬上傳開了。「我製成望遠鏡的消息傳到威尼斯」,在一封寫給妹夫的信里,伽利略寫道:「一星期之後,就命我把望遠鏡呈獻給議長和議員們觀看,他們感到非常驚奇。紳士和議員們,雖然年紀很大了,但都按次序登上威尼斯的最高鍾樓,眺望遠在港外的船隻,看得都很清楚;如果沒有我的望遠鏡,就是眺望兩個小時,也看不見。這儀器的效用可使50英里的以外的物體,看起來就像在5英里以內那樣。」 伽利略發明的望遠鏡,經過不斷改進,放大率提高到30倍以上,能把實物放大1000倍。現在,他猶如有了千里眼,可以窺探宇宙的秘密了。 這是天文學研究中具有劃時代意義的一次革命,幾千年來天文學家單靠肉眼觀察日月星辰的時代結束了,代之而起的是光學望遠鏡,有了這種有力的武器,近代天文學的大門被打開了。 現在,每當星光燦爛或是皓月當空的夜晚,伽利略便把他的望遠鏡瞄準深邃遙遠的蒼穹,不顧疲勞和寒冷,夜復一夜地觀察著。 過去,人們一直以為月亮是個光滑的天體,像太陽一樣自身發光。但是伽利略透過望遠鏡發現,月亮和我們生存的地球一樣,有高峻的山脈,也有低凹的窪地 (當時伽利略稱它是「海」)。他還從月亮上亮的和暗的部分的移動,發現了月亮自身並不能發光,月亮的光是透過太陽得來的。 伽利略又把望遠鏡對准橫貫天穹的銀河,以前人們一直認為銀河是地球上的水蒸汽凝成的白霧,亞里士多德就是這樣認為的。伽利略決定用望遠鏡檢驗這一說法是否正確。他用望遠鏡對准夜空中霧蒙蒙的光帶,不禁大吃一驚,原來那根本不是雲霧,而是千千萬萬顆星星聚集一起。伽利略還觀察了天空中的斑斑雲彩——即通常所說的星團,發現星團也是很多星體聚集一起,像獵戶座 星團、金牛座的昂星團、蜂巢星團都是如此。 伽利略的望遠鏡揭開了一個又一個宇宙的秘密,他發現了木星周圍環繞著它運動的衛星,還計算了它們的運行周期。現在我們知道,木星共有 16顆衛星,伽利略所發現的是其中最大的四顆。除此之外,伽利略還用望遠鏡觀察到太陽的黑子,他通過黑子的移動現象推斷,太陽也是在轉動的。 一個又一個振奮人心的發現,促使伽利略動筆寫一本最新的天文學發現的書,他要向全世界公布他的觀測結果。1610年3月,伽利略的著作《星際使者》在威尼斯出版,立即在歐洲引起轟動。 但是,他沒有想到,望遠鏡揭開的宇宙的秘密大大觸怒了很多人,一場可怕的厄運即將降臨在這位傑出的科學家的頭上。
求採納

熱點內容
美發店認證 發布:2021-03-16 21:43:38 瀏覽:443
物業糾紛原因 發布:2021-03-16 21:42:46 瀏覽:474
全國著名不孕不育醫院 發布:2021-03-16 21:42:24 瀏覽:679
知名明星確診 發布:2021-03-16 21:42:04 瀏覽:14
ipad大專有用嗎 發布:2021-03-16 21:40:58 瀏覽:670
公務員協議班值得嗎 發布:2021-03-16 21:40:00 瀏覽:21
知名書店品牌 發布:2021-03-16 21:39:09 瀏覽:949
q雷授權碼在哪裡買 發布:2021-03-16 21:38:44 瀏覽:852
圖書天貓轉讓 發布:2021-03-16 21:38:26 瀏覽:707
寶寶水杯品牌 發布:2021-03-16 21:35:56 瀏覽:837