電子顯微鏡是誰發明的
㈠ 電子顯微鏡是如何發明的
人類的第三隻眼
——1931年電子顯微鏡的發明
1931年,德國科學家恩斯特·魯斯卡與組長馬克斯·克諾爾博士製成了世人公認的第一台電子顯微鏡。1932年,恩斯特·魯斯卡發表了以「幾何電子光學的進展」為題的論文,第一次使用電子顯微鏡的名稱,所以這一年被認為是電子顯微鏡的發明年份。
除了動植物以外,自然界還有一個龐大的生物世界,就是微生物。它們都很小,小到把幾億個微生物堆積在一起時,也只有一粒米那麼大小。顯微鏡的發明打開了人類通向微生物等微觀世界的大門。1590年,楊斯岑兄弟發明了世界上最早的顯微鏡。17世紀中期人類發明了光學顯微鏡,18世紀荷蘭人列文·虎克藉助顯微鏡發現了組成動植物身體的細胞,逐步認識了細胞核及其作用,這是顯微鏡發展史上的第一個里程碑。
隨著對細胞的不斷深入研究,光學顯微鏡的局限性日益明顯。由於它以可見光作為光源,分辨能力受到光波影響,無法進一步了解細胞的微細結構。人們期待分辨本領更高、功能更強的超級顯微鏡。
1931年,生於德國海德爾堡的工程師恩斯特·魯斯卡在其組長馬克斯·克諾爾博士指導下對顯微鏡進行了自16世紀荷蘭人加裝第二塊透鏡以來最重要的革新:他們研製出了一台電子顯微鏡。這台顯微鏡能將物體放大十幾倍。1932年,恩斯特·魯斯卡致力於提高電子顯微鏡的分辨本領,在德國《物理學進展》雜志上發表了以「幾何電子光學的進展」為題的論文,第一次使用電子顯微鏡的名稱。此後,電子顯微鏡成了20世紀後期科學家對微觀物質結構和生命形式進行探索的強有力的工具。
有兩次「發現」為克諾爾和魯斯卡的研究奠定了基礎。1924年,法國物理學家路易·德布羅意發現電子束呈波狀運動,但其波長要比光的波長短得多。德布羅意的發現意味著如果能找到使電子束聚集的方法,就能將其用來放大物像。兩年後,德國物理學家漢斯·布施發現了調節焦點所產生的效果:電磁場或靜電場中不再有電子了。實際上,電磁場或靜電場成了一個透鏡,電子變成了光。結合兩者,電子顯微鏡被發明並以驚人的速度發展。
20世紀30年代末,德國西門子公司、英國的大都會·維克爾公司和美國無線電公司等這樣的著名高科技公司,完善了電子透鏡的基本原理,將電子束聚集在真空腔內形成的電磁場或靜電場中,從而達到放大物體的目的。1938年,可將照片放大3萬倍的電子顯微鏡研製成功。
此後,出現了一種改進型的電子顯微鏡,這種顯微鏡可將物體放大10萬倍。伴隨著技術和設備的不斷改進和提高,人們終於實現了觀察原子的理想。光學顯微鏡的最高分辨本領約為200納米,與此相對應的最高有效放大倍數是1500倍。現代高分辨電子顯微鏡的分辨本領已達0.1納米、放大倍數在150萬倍以上,這相當於把一個直徑4米的氣球放大到地球那麼大。它還可以把原子放大成一個個小饅頭那麼大,那麼清晰可見。
這里,要提一句的是,從19世紀末到20世紀20年代,盡管已有不少傑出的科學家發現了電子束可以聚焦並得到了成像公式,但為什麼沒有引導他們讓電子束代替光束發明電子顯微鏡呢?主要原因之一是他們遠離科學實驗。而魯斯卡敢於排除人們的偏見和責難,勇於實踐,終於發明了電子顯微鏡。
㈡ 第一個發明顯微鏡的人是誰
有好多人發明了顯微鏡,小學語文課文里說了是列文虎克,不過列文虎克回不是第一個發明顯微鏡的答,他也發明了顯微鏡,但他發明了顯微鏡讓大家知道了顯微鏡的用處,不過除了列文虎克還有兩個答案,一個是詹森,另外一個是盧斯卡。真正發明顯微鏡的是詹森,但沒有得到大家的信任,第二個是列文虎克,他得到了大家的信任,第三個是盧斯卡,他改進了顯微鏡。
㈢ 顯微鏡是誰發明的
發明者是亞斯·詹森,荷蘭眼鏡商,或者另一位荷蘭科學家漢斯·利珀希。亞斯·詹森與荷蘭科學家漢斯·利珀希各自獨立發明了顯微鏡。
最早的顯微鏡是16世紀末期在荷蘭製造出來的。發明者是亞斯·詹森,荷蘭眼鏡商,或者另一位荷蘭科學家漢斯·利珀希,他們用兩片透鏡製作了簡易的顯微鏡,但並沒有用這些儀器做過任何重要的觀察。
亞斯·詹森是它是用一個凹鏡和一個凸鏡做成的,製作水平還很低。詹森雖然是發明顯微鏡的第一人,卻並沒有發現顯微鏡的真正價值。也許正是因為這個原因,詹森的發明並沒有引起世人的重視。
(3)電子顯微鏡是誰發明的擴展閱讀:
顯微鏡發展歷史:
1611年,Kepler(克卜勒):提議復合式顯微鏡的製作方式。
1876年,Abbe(阿比):剖析影像在顯微鏡中成像時所產生的繞射作用,試圖設計出最理想的顯微鏡。
1930年,Lebedeff(萊比戴衛):設計並搭配第一架干涉顯微鏡。另外由Zernicke(卓尼柯)在1932年發明出相位差顯微鏡,兩人將傳統光學顯微鏡延伸發展出來的相位差觀察使生物學家得以觀察染色活細胞上的種種細節。
1981年,Allen and Inoue(艾倫及艾紐):將光學顯微原理上的影像增強對比,發展趨於完美境界。
1988年,Confocal(共軛焦)掃描顯微鏡在市場上被廣為使用。
㈣ 誰發明了顯微鏡
最早的顯微鏡是16世紀末期在荷蘭製造出來的。發明者是亞斯·詹森,荷蘭眼鏡商,或者另一位荷蘭科學家漢斯·利珀希,他們用兩片透鏡製作了簡易的顯微鏡,但並沒有用這些儀器做過任何重要的觀察。
1931年,恩斯特·魯斯卡通過研製電子顯微鏡。這使得科學家能觀察到像百萬分之一毫米那樣小的物體。1986年他被授予諾貝爾獎。
顯微鏡是人類20世紀最偉大的發明物之一。在發明出來之前,人類關於周圍世界的觀念局限在用肉眼,或者靠手持透鏡幫助肉眼所看到的東西。
(4)電子顯微鏡是誰發明的擴展閱讀:
顯微鏡的分類:
1、偏光顯微鏡
偏光顯微鏡(Polarizing microscope)是用於研究所謂透明與不透明各向異性材料的一種顯微鏡,在地質學等理工科專業中有重要應用。
2、光學顯微鏡
通常皆由光學部分、照明部分和機械部分組成。無疑光學部分是最為關鍵的,它由目鏡和物鏡組成。早於1590年,荷蘭和義大利的眼鏡製造者已經造出類似顯微鏡的放大儀器。
3、攜帶型顯微鏡
攜帶型顯微鏡,主要是近幾年發展出來的數碼顯微鏡與視頻顯微鏡系列的延伸。
4、數碼顯微鏡
數碼顯微鏡是將精銳的光學顯微鏡技術、先進的光電轉換技術、液晶屏幕技術完美地結合在一起而開發研製成功的一項高科技產品。
參考資料來源:網路-顯微鏡
㈤ 電子顯微鏡是怎麼發明的
除了動植物以外,自然界還有一個龐大的生物世界,就是微生物。它們都很小,小到把幾億個微生物堆積在一起時,也只有一粒米那麼大小。顯微鏡的發明打開了人類通向微生物等微觀世界的大門。1590年,楊斯岑兄弟發明了世界上最早的顯微鏡。17世紀中期人類發明了光學顯微鏡,18世紀荷蘭人列文·虎克藉助顯微鏡發現了組成動植物身體的細胞,逐步認識了細胞核及其作用,這是顯微鏡發展史上的第一個里程碑。
隨著對細胞的不斷深入研究,光學顯微鏡的局限性日益明顯。由於它以可見光作為光源,分辨能力受到光波影響,無法進一步了解細胞的微細結構。人們期待分辨本領更高、功能更強的超級顯微鏡。
1931年,生於德國海德爾堡的工程師恩斯特·魯斯卡在其組長馬克斯·克諾爾博士指導下對顯微鏡進行了自16世紀荷蘭人加裝第二塊透鏡以來最重要的革新:他們研製出了一台電子顯微鏡。這台顯微鏡能將物體放大十幾倍。1932年,恩斯特·魯斯卡致力於提高電子顯微鏡的分辨本領,在德國《物理學進展》雜志上發表了以「幾何電子光學的進展」為題的論文,第一次使用電子顯微鏡的名稱,所以1932年被認為是電子顯微鏡的發明年份。此後電子顯微鏡成了20世紀後期科學家對微觀物質結構和生命形式進行探索的強有力的工具。
有兩次「發現」為克諾爾和魯斯卡的研究奠定了基礎。1924年,法國物理學家路易·德布羅意發現電子束呈波狀運動,但其波長要比光的波長短得多。德布羅意的發現意味著如果能找到使電子束聚集的方法,就能將其用來放大物像。兩年後,德國物理學家漢斯·布施發現了調節焦點所產生的效果:電磁場或靜電場中不再有電子了。實際上,電磁場或靜電場成了一個透鏡,電子變成了光。結合兩者,電子顯微鏡被發明並以驚人的速度發展。
20世紀30年代末,德國西門子公司、英國的大都會·維克爾公司和美國無線電公司等這樣的著名高科技公司,完善了電子透鏡的基本原理,將電子束聚集在真空腔內形成的電磁場或靜電場中,從而達到放大物體的目的。1938年,可將照片放大3萬倍的電子顯微鏡研製成功。
此後,出現了一種改進型的電子顯微鏡,這種顯微鏡可將物體放大10萬倍。伴隨著技術和設備的不斷改進和提高,人們終於實現了觀察原子的理想。光學顯微鏡的最高分辨本領約為200納米,與此相對應的最高有效放大倍數是1500倍。現代高分辨電子顯微鏡的分辨本領已達0.1納米、放大倍數在150萬倍以上,這相當於把一個直徑4米的氣球放大到地球那麼大。它還可以把原子放大成一個個小饅頭那麼大、那麼清晰可見。
這里,要提一句的是,從19世紀末到20世紀20年代,盡管已有不少傑出的科學家發現了電子束可以聚焦並得到了成像公式,但為什麼沒有引導他們讓電子束代替光束發明電子顯微鏡呢?主要原因之一是他們遠離科學實驗。而魯斯卡敢於排除人們的偏見和責難,勇於實踐,終於發明了電子顯微鏡。
㈥ 顯微鏡的發明者是誰
亞斯·詹森和漢斯·利珀希。
亞斯·詹森,荷蘭人,發明家,顯微鏡的發明者之一,與荷蘭科學家漢斯·利珀希各自獨立發明了顯微鏡。眼鏡製造商亞斯·詹森在1590年左右發明了顯微鏡。它由凹面鏡和凸面鏡組成,製作水平很低。
雖然亞斯·詹森是顯微鏡的發明者之一,但沒有發現顯微鏡的真正價值。也許正是因為這個原因,亞斯·詹森的發明並沒有引起全世界的注意。顯微鏡是人類最偉大的發明之一。在它被發明之前,人類對周圍世界的概念僅限於用手持鏡片幫助肉眼能看到的東西。
(6)電子顯微鏡是誰發明的擴展閱讀:
顯微鏡的發明過程:
最早的顯微鏡是16世紀末期在荷蘭製造出來的。發明者是亞斯·詹森,荷蘭眼鏡商,或者另一位荷蘭科學家漢斯·利珀希,二人用兩片透鏡製作了簡易的顯微鏡,但並沒有用這些儀器做過任何重要的觀察。
後來,有兩個人開始在科學上使用顯微鏡。第一位是伽利略,一位義大利科學家,在顯微鏡下觀察昆蟲後,首次描述了昆蟲的復眼。第二個是荷蘭亞麻織品商人列文虎克(1632年-1723年),自己也學會了磨鏡片,首次描述了許多肉眼看不見的微小動植物。
1931年,恩斯特·魯斯卡通過研製電子顯微鏡,徹底改變了生物學。這使得科學家可以觀察到小到百萬分之一毫米的物體,於1986年獲得諾貝爾獎。
㈦ 電子顯微鏡是怎麼被發明的
除了動植物以外,自然界還有一個龐大的生物世界,就是微生物。它們都很小,小到把幾億個微生物堆積在一起時,也只有一粒米那麼大小。顯微鏡的發明打開了人類通向微生物等微觀世界的大門。1590年,楊斯岑兄弟發明了世界上最早的顯微鏡。17世紀中期人類發明了光學顯微鏡,18世紀荷蘭人列文·虎克藉助顯微鏡發現了組成動植物身體的細胞,逐步認識了細胞核及其作用,這是顯微鏡發展史上的第一個里程碑。
隨著對細胞的不斷深入研究,光學顯微鏡的局限性日益明顯。由於它以可見光作為光源,分辨能力受到光波影響,無法進一步了解細胞的微細結構。人們期待分辨本領更高、功能更強的超級顯微鏡。
1931年,生於德國海德爾堡的工程師恩斯特·魯斯卡在其組長馬克斯·克諾爾博士指導下對顯微鏡進行了自16世紀荷蘭人加裝第二塊透鏡以來最重要的革新:他們研製出了一台電子顯微鏡。這台顯微鏡能將物體放大十幾倍。1932年,恩斯特·魯斯卡致力於提高電子顯微鏡的分辨本領,在德國《物理學進展》雜志上發表了以「幾何電子光學的進展」為題的論文,第一次使用電子顯微鏡的名稱,所以1932年被認為是電子顯微鏡的發明年份。此後電子顯微鏡成了20世紀後期科學家對微觀物質結構和生命形式進行探索的強有力的工具。
有兩次「發現」為克諾爾和魯斯卡的研究奠定了基礎。1924年,法國物理學家路易·德布羅意發現電子束呈波狀運動,但其波長要比光的波長短得多。德布羅意的發現意味著如果能找到使電子束聚集的方法,就能將其用來放大物像。兩年後,德國物理學家漢斯·布施發現了調節焦點所產生的效果:電磁場或靜電場中不再有電子了。實際上,電磁場或靜電場成了一個透鏡,電子變成了光。結合兩者,電子顯微鏡被發明並以驚人的速度發展。
20世紀30年代末,德國西門子公司、英國的大都會·維克爾公司和美國無線電公司等這樣的著名高科技公司,完善了電子透鏡的基本原理,將電子束聚集在真空腔內形成的電磁場或靜電場中,從而達到放大物體的目的。1938年,可將照片放大3萬倍的電子顯微鏡研製成功。
此後,出現了一種改進型的電子顯微鏡,這種顯微鏡可將物體放大10萬倍。伴隨著技術和設備的不斷改進和提高,人們終於實現了觀察原子的理想。光學顯微鏡的最高分辨本領約為200納米,與此相對應的最高有效放大倍數是1500倍。現代高分辨電子顯微鏡的分辨本領已達0.1納米、放大倍數在150萬倍以上,這相當於把一個直徑4米的氣球放大到地球那麼大。它還可以把原子放大成一個個小饅頭那麼大、那麼清晰可見。
這里,要提一句的是,從19世紀末到20世紀20年代,盡管已有不少傑出的科學家發現了電子束可以聚焦並得到了成像公式,但為什麼沒有引導他們讓電子束代替光束發明電子顯微鏡呢?主要原因之一是他們遠離科學實驗。而魯斯卡敢於排除人們的偏見和責難,勇於實踐,終於發明了電子顯微鏡。
㈧ 顯微鏡是誰發明的
顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進版入原子時代的標志。主要權用於放大微小物體成為人的肉眼所能看到的儀器。顯微鏡分光學顯微鏡和電子顯微鏡:光學顯微鏡是在1590年由荷蘭的楊森父子所首創。現在的光學顯微鏡可把物體放大1600倍,分辨的最小極限達0.1微米,國內顯微鏡機械筒長度一般是160mm。國內主要生產廠家上海光學儀器廠 等 http://ke..com/view/2921.htm
希望採納
㈨ 發明第一個電子顯微鏡的人是誰
德國柏林工科大學的年輕研究員盧斯卡,1932年製作了第一台電子顯微鏡——它是一台經過改進的陰極射線示波器,成功地得到了銅網的放大像——第一次由電子束形成的圖像,加速電壓為7萬,最初放大率僅為12倍。盡管放大率微不足道,但它卻證實了使用電子束和電子透鏡可形成與光學像相同的電子像。
經過不斷地改進,1933年盧斯卡製成了二級放大的電子顯微鏡,獲得了金屬箔和纖維的1萬倍的放大像。
1937年應西門子公司的邀請,盧斯理建立了超顯微鏡學實驗室。1939年西門子公司製造出分辨本領達到30埃的世界上最早的實用電子顯微鏡,並投入批量生產。
電子顯微鏡的出現使人類的洞察能力提高了好幾百倍,不僅看到了病毒,而且看見了一些大分子,即使經過特殊制備的某些類型材料樣品里的原子,也能夠被看到。
但是,受電子顯微鏡本身的設計原理和現代加工技術手段的限制,目前它的分辨本領已經接近極限。要進一步研究比原子尺度更小的微觀世界必須要有概念和原理上的根本突破。
1978年,一種新的物理探測系統—— 「掃描隧道顯微鏡已被德國學者賓尼格和瑞士學者羅雷爾系統地論證了,並於1982年製造成功。這種新型的顯微鏡,放大倍數可達3億倍,最小可分辨的兩點距離為原子直徑的1/10,也就是說它的解析度高達0.1埃。
掃描隧道顯微鏡採用了全新的工作原理,它利用一種電子隧道現象,將樣品本身作為一具電極,另一個電極是一根非常尖銳的探針,把探針移近樣品,並在兩者之間加上電壓,當探針和樣品表面相距只有數十埃時,由於隧道效應在探針與樣品表面之間就會產生隧穿電流,並保持不變,若表面有微小起伏,那怕只有原子大小的起伏,也將使穿電流發生成千上萬倍的變化,這種攜帶原子結構的信息,輸入電子計算機,經過處理即可在熒光屏上顯示出一幅物體的三維圖象。
鑒於盧斯卡發明電子顯微鏡的,賓尼格、羅雷爾設計製造掃描隧道顯微鏡的業績,瑞典皇家科學院決定,將1986年諾貝爾物理獎授予他們三人。