新型半導體器件
① 新型半導體激光器有哪些技術特點
半導體激光器激光器優點是體積小,重量輕,運轉可靠,耗電少,效率高等特點
封裝技術
技術介紹
半導體激光器封裝技術大都是在分立器件封裝技術基礎上發展與演變而來的,但卻有很大的特殊性。一般情況下,分立器件的管芯被密封在封裝體內,封裝的作用主要是保護管芯和完成電氣互連。而半導體激光器封裝則是完成輸出電信號,保護管芯正常工作,輸出:可見光的功能,既有電參數,又有光參數的設計及技術要求,無法簡單地將分立器件的封裝用於半導體激光器。
發光部分
半導體激光器的核心發光部分是由p型和n型半導體構成的pn結管芯,當注入pn結的少數載流子與多數載流子復合時,就會發出可見光,紫外光或近紅外光。但pn結區發出的光子是非定向的,即向各個方向發射有相同的幾率,因此,並不是管芯產生的所有光都可以釋放出來,這主要取決於半導體材料質量、管芯結構及幾何形狀、封裝內部結構與包封材料,應用要求提高半導體激光器的內、外部量子效率。常規Φ5mm型半導體激光器封裝是將邊長0.25mm的正方形管芯粘結或燒結在引線架上,管芯的正極通過球形接觸點與金絲,鍵合為內引線與一條管腳相連,負極通過反射杯和引線架的另一管腳相連,然後其頂部用環氧樹脂包封。
反射杯的作用是收集管芯側面、界面發出的光,向期望的方向角內發射。頂部包封的環氧樹脂做成一定形狀,有這樣幾種作用:保護管芯等不受外界侵蝕;採用不同的形狀和材料性質(摻或不摻散色劑),起透鏡或漫射透鏡功能,控制光的發散角;管芯折射率與空氣折射率相關太大,致使管芯內部的全反射臨界角很小,其有源層產生的光只有小部分被取出,大部分易在管芯內部經多次反射而被吸收,易發生全反射導致過多光損失,選用相應折射率的環氧樹脂作過渡,提高管芯的光出射效率。用作構成管殼的環氧樹脂須具有耐濕性,絕緣性,機械強度,對管芯發出光的折射率和透射率高。選擇不同折射率的封裝材料,封裝幾何形狀對光子逸出效率的影響是不同的,發光強度的角分布也與管芯結構、光輸出方式、封裝透鏡所用材質和形狀有關。若採用尖形樹脂透鏡,可使光集中到半導體激光器的軸線方向,相應的視角較小;如果頂部的樹脂透鏡為圓形或平面型,其相應視角將增大。
驅動電流
一般情況下,半導體激光器的發光波長隨溫度變化為0.2-0.3nm/℃,光譜寬度隨之增加,影響顏色鮮艷度。另外,當正向電流流經pn結,發熱性損耗使結區產生溫升,在室溫附近,溫度每升高1℃,半導體激光器的發光強度會相應地減少1%左右,封裝散熱;時保持色純度與發光強度非常重要,以往多採用減少其驅動電流的辦法,降低結溫,多數半導體激光器的驅動電流限制在20mA左右。但是,半導體激光器的光輸出會隨電流的增大而增加,目前,很多功率型半導體激光器的驅動電流可以達到70mA、100mA甚至1A級,需要改進封裝結構,全新的半導體激光器封裝設計理念和低熱阻封裝結構及技術,改善熱特性。例如,採用大面積晶元倒裝結構,選用導熱性能好的銀膠,增大金屬支架的表面積,焊料凸點的硅載體直接裝在熱沉上等方法。此外,在應用設計中,PCB線路板等的熱設計、導熱性能也十分重要。
② 考研考新型半導體器件工藝這個方向怎樣將來工作環境怎麼樣與納米材料與器件及人工智慧方向相比哪個好
半導體工藝和納米材料差不多。主要都是因為需要超凈環境的原因,很大可能工作時需要穿超凈服,不怎麼舒服,不過習慣了就好了。另外,半導體工藝很有可能涉及有毒有害原料,如果你忌諱就算了吧。
人工智慧相對來說更「安全」點,但是需要一定的數學和編程功底,而且也需要對電路、機械有所了解。
總的說來,首先看興趣;然後是你打算工作的城市哪個機會大(本人回老家工作,結果半導體行業的公司那叫一個少啊……);最後是你打不打算讀博,看看哪個老師更有分量。
三個行業都是深入進去很有前途,學出來找個好公司工資都不低。
③ 什麼是變頻電機
變頻電機值得的是在標准環境條件下,以100%額定負載在10%~100%額定速度范圍內連續運行,溫升不會超過該電機標定容許值的電機。
變頻電機實際上為變頻器設計的電機為變頻專用電機,電機可以在變頻器的驅動下實現不同的轉速與扭矩,以適應負載的需求變化。
變頻電動機由傳統的鼠籠式電動機發展而來,把傳統的電機風機改為獨立出來的風機,並且提高了電機繞組的絕緣性能。在要求不高的場合如小功率和頻率在額定工作頻率工作情況下,可以用普通鼠籠電動機代替。
(3)新型半導體器件擴展閱讀
變頻節能原理
由流體力學可知,P(功率)=Q(流量)╳ H(壓力),流量Q與轉速N的一次方成正比,壓力H與轉速N的平方成正比,功率P與轉速N的立方成正比,如果水泵的效率一定,當要求調節流量下降時,轉速N可成比例的下降,而此時軸輸出功率P成立方關系下降。
即水泵電機的耗電功率與轉速近似成立方比的關系。例如:一台水泵電機功率為55KW,當轉速下降到原轉速的4/5時,其耗電量為28.16KW,省電48.8%,當轉速下降到原轉速的1/2時,其耗電量為6.875KW,省電87.5%.
變頻電機試驗一般需要採用變頻器供電,由於變頻器輸出頻率具有較寬的變化范圍,且輸出的PWM波含有豐富的諧波,傳統的互感器及功率計已經不能滿足試驗的測量需要,而一般的霍爾電壓、電流感測器不對直接影響功率准確度測量的角差指標進行控制和標稱,應該採用有明確比差和角差指標的變頻功率分析儀及變頻功率感測器等作為主電量測量儀器。
④ 請大家介紹一兩種新型半導體器件的工作原理及應用,我要寫專業導論,1500字左右的小型的。
請參考網路詞條「半導體器件」
晶體二極體
晶體二極體的基本結構是由一塊 P型半導體和一塊N型半導體結合在一起形成一個 PN結。在PN結的交界面處,由於P型半導體中的空穴和N型半導體中的電子要相互向對方擴散而形成一個具有空間電荷的偶極層。這偶極層阻止了空穴和電子的繼續擴散而使PN結達到平衡狀態。當PN結的P端(P型半導體那邊)接電源的正極而另一端接負極時,空穴和電子都向偶極層流動而使偶極層變薄,電流很快上升。如果把電源的方向反過來接,則空穴和電子都背離偶極層流動而使偶極層變厚,同時電流被限制在一個很小的飽和值內(稱反向飽和電流)。因此,PN結具有單向導電性。此外,PN結的偶極層還起一個電容的作用,這電容隨著外加電壓的變化而變化。在偶極層內部電場很強。當外加反向電壓達到一定閾值時,偶極層內部會發生雪崩擊穿而使電流突然增加幾個數量級。利用PN結的這些特性在各種應用領域內製成的二極體有:整流二極體、檢波二極體、變頻二極體、變容二極體、開關二極體、穩壓二極體(曾訥二極體)、崩越二極體(碰撞雪崩渡越二極體)和俘越二極體(俘獲等離子體雪崩渡越時間二極體)等。此外,還有利用PN結特殊效應的隧道二極體,以及沒有PN結的肖脫基二極體和耿氏二極體等。
雙極型晶體管
它是由兩個PN結構成,其中一個PN結稱為發射結,另一個稱為集電結。兩個結之間的一薄層半導體材料稱為基區。接在發射結一端和集電結一端的兩個電極分別稱為發射極和集電極。接在基區上的電極稱為基極。在應用時,發射結處於正向偏置,集電極處於反向偏置。通過發射結的電流使大量的少數載流子注入到基區里,這些少數載流子靠擴散遷移到集電結而形成集電極電流,只有極少量的少數載流子在基區內復合而形成基極電流。集電極電流與基極電流之比稱為共發射極電流放大系數?。在共發射極電路中,微小的基極電流變化可以控制很大的集電極電流變化,這就是雙極型晶體管的電流放大效應。雙極型晶體管可分為NPN型和PNP型兩類。
場效應晶體管
它依靠一塊薄層半導體受橫向電場影響而改變其電阻(簡稱場效應),使具有放大信號的功能。這薄層半導體的兩端接兩個電極稱為源和漏。控制橫向電場的電極稱為柵。
根據柵的結構,場效應晶體管可以分為三種:
①結型場效應管(用PN結構成柵極);
②MOS場效應管(用金屬-氧化物-半導體構成柵極,見金屬-絕緣體-半導體系統);
③MES場效應管(用金屬與半導體接觸構成柵極);其中MOS場效應管使用最廣泛。尤其在大規模集成電路的發展中,MOS大規模集成電路具有特殊的優越性。MES場效應管一般用在GaAs微波晶體管上。
在MOS器件的基礎上,最近又發展出一種電荷耦合器件 (CCD),它是以半導體表面附近存儲的電荷作為信息,控製表面附近的勢阱使電荷在表面附近向某一方向轉移。這種器件通常可以用作延遲線和存儲器等;配上光電二極體列陣,可用作攝像管。
集成電路
把晶體二極體、三極體以及電阻電容都製作在同一塊硅晶元上,稱為集成電路。一塊硅晶元上集成的元件數小於 100個的稱為小規模集成電路,從 100個元件到1000 個元件的稱為中規模集成電路,從1000 個元件到100000 個元件的稱為大規模集成電路,100000 個元件以上的稱為超大規模集成電路。集成電路是當前發展計算機所必需的基礎電子器件。許多工業先進國家都十分重視集成電路工業的發展。近十年來集成電路的集成度以每年增加一倍的速度在增長。目前每個晶元上集成256千位的MOS隨機存儲器已研製成功,正在向1兆位 MOS隨機存儲器探索。
⑤ 新型功率半導體器件都有什麼
剛考了這門課。您說的功率半導體的常用名叫做電力電子器件,隸屬於半導體物理學和電力電子學。電力電子器件從電力二極體(不控),晶閘管(半控),發展到全控器件PMOSFET,BJT ,IGBT等,這些全控器件想必是您所要的新型功率器件。此外在這些器件基礎上,經過復合優化,又有大量新生器件種類,但應用還不多。具體請參見陳堅老師的電力電子學,王兆安老師的電力電子技術電力電子器件相關章節。都是用得復習時自己總結的筆記,不知可否把分給我。
⑥ 半導體晶元是一種什麼新型材料,它有哪些作用
半導體的材料:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的作用:
(1)集成電路 它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。(2)微波器件半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件 半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
半導體的特點:
(1)電阻率的變化受雜質含量的影響極大。例如,硅中只含有億分之一的硼,電阻率就會下降到原來的千分之一。如果所含雜質的類型不同,導電類型也不同。由此可見,半導體的導電性與所含的微量雜質有著非常密切的關系。(2)電阻率受外界條件(如熱、光等)的影響很大。溫度升高或受光照射時均可使電阻率迅速下降。一些特殊的半導體在電場或磁場的作用下,電阻率也會發生改變。