數學方程中元次是由誰創造的
㈠ 數學方程中的元次是誰創造的
康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。
比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。
南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。
(1)數學方程中元次是由誰創造的擴展閱讀
南懷仁簡介
南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。
他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。
㈡ 方程是誰發明的
方程是法國數學家韋達首創 。十六世紀,隨著各種數學符號的出現,法專國數學家韋達創屬立了較系統的表示未知量和已知量的符號以後,「含有未知數的等式」 ,這一專門概念便出現了。方程史話:一、大約3600年前古埃及人寫在紙草上的數學問題中,就涉及了方程中含有未知數的等式。二、公元825年左右中亞細亞的數學家阿爾-花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。三、宋元時期中國數學家創立了「天元術」,用「天元」表示未知數進而建立方程。這種方法的代表作是數學家李冶寫的《測圓海鏡》(1248),書中所說的「立天元一」相當於「設未知數x。」所以在簡稱方程時,將未知數稱為「元」,如一個未知數的方程叫「一元方程」。而兩個以上的未知數,在古代又稱為「天元」、「地元」、「人元」。《九章算術·方程》白尚恕注釋:「『方』即方形,『程』即表達相課的意思,或者是表達式。於某一問題中,如有含若干個相關的數據,將這些相關的數據並肩排列成方形,則稱為『方程』。
㈢ 求教方程中元和次的概念
數學里「元」是代表未知數的意思,次就是未知數最高有幾次方。
一元二次方程:只版含有一個未權知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。
二元一次方程:含有兩個未知數(二元),並且含有未知數的項的次數都是1的整式方程叫做二元一次方程。所有二元一次方程都可化為ax+by+c=0(a、b≠0)的一般式與ax+by=c(a、b≠0)的標準式,否則不為二元一次方程。
(3)數學方程中元次是由誰創造的擴展閱讀:
將方程組中一個方程的某個未知數用含有另一個未知數的代數式表示出來,代入另一個方程中,消去一個未知數,得到一個一元一次方程,最後求得方程組的解。
一元二次方程的求根公式在方程的系數為有理數、實數、復數或是任意數域中適用;在使用計算機解一元二次方程時,和人手工計算類似,大部分情況下也是根據求根公式來求解。
㈣ 二元一次方程中元和次的意義是什麼 急急急。。。
如果一個方程含有兩個未知數(元),並且所含未知項的次數都為1次(次),那麼這個整式方程就叫做二元一次方程
㈤ 我們現在數學用的方程,根,解等名詞都是康熙創造出來的嗎有何依據(正史,謝謝!)
康熙教皇子數學、天文學、地理學、醫學、測量學、農學等。先以觀測日食內為例。康熙三十六年(1697年)閏三容月初一日,日食。時康熙帝親征噶爾丹在外,皇太子在北京觀測,使用皇父所賜嵌有三層玻璃的小鏡子,裝於自鳴鍾之上,用望日千里眼觀望。日食似不到十分,日光、房屋、牆壁及人影俱可見,甚屬明耀。觀測奏報自京城發出,送皇父覽閱。康熙帝得到奏報後,硃批曰:「覽爾所奏,果然如此。」後來皇四子胤禛(雍正)回憶道:「昔年遇日食四五分之時,日光照耀,難以仰視。皇考親率朕同諸兄弟在乾清宮,用千里鏡,四周用夾紙遮蔽日光,然後看出考驗所虧分數。此朕身經實驗者。」又以幾何學為例。法國耶穌會士白晉寫給法王路易十四的信中說,康熙帝親自給皇三子胤祉講解幾何學,並培養其科學才能。後又讓胤祉等向義大利耶穌會士德理格學習律呂知識,「命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日講究其精微,修造新書」。康熙帝命在暢春園蒙養齋開館,派允祉主持纂修《律歷淵源》,匯律呂、歷法和演算法於一書。允祉還為《古今圖書集成》的纂輯做出貢獻,成為康熙朝一位傑出的學者。但他在雍正繼位後,仍未逃過劫難:被奪爵,禁景山永安亭而死。
㈥ 一元二次方程是誰發明的
「一元二次方程新解法」的發明人叫羅伯森,是卡內基梅隆大學華裔數學教授、美國奧數教練,並且羅伯森教授表示:「如果這種方法直到今天都沒有被人類發現的話,我會感到非常驚訝,因為這個課題已經有4000年的歷史了,而且有數十億人都遇到過這個公式和它的證明。」
事實上,在古代,全世界的數學家對一元二次方程都有研究,雖然也沒有一模一樣的方法出現,但是究其內涵,有些古代的解法與羅教授的解法可謂是大同小異。原因也不難想,古代的數學家們沒有韋達,更沒有代數的符號記法,而現如今羅教授的解法確實有「踩肩膀」的嫌疑。
(6)數學方程中元次是由誰創造的擴展閱讀:
古阿拉伯對一元二次方程的解法
阿爾·花剌子模在書中提出一個問題:「一個平方和十個這個平方的根等於三十九個迪拉姆,它是多少?」由於當時代數符號根本沒有發明,古代數學的方程只能靠文字去描述。
設這個數是X,那麼「平方」就是X²,「平方的根」就是將X²在開方,故「平方的根」是指「X」,「十個這個平方的根」就是10X,問題轉化為求方程:X²+10X=39的解。
花剌子模給出的解法是:(注意:下文中的「根」,不指現如今方程的根,而指平方根)
1、將根的個數減半。本題中,是將10減半,故得到5;
2、用5乘自己,再加39,得到64;
3、取64的根,即將64開方,得到8;
4、再從中減去根的個數的一半,即再用8去減5,得到3,方程解完。
㈦ 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時回提出的,因當時答沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(7)數學方程中元次是由誰創造的擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
㈧ 方程是誰發明的
方程的發明者是法國數學家韋達。
韋達1540年生於法國的普瓦圖(Poitou),今旺代省的豐特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒於巴黎。年輕時學習法律並當過律師。後從事政治活動,當過議會的議員。
在對西班牙的戰爭中,曾為政府破譯敵軍的密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示已知數、未知數及其乘冪,帶來了代數學理論研究的重大進步。韋達討論了方程根的各種有理變換,發現了方程根與系數之間的關系(所以人們把敘述一元二次方程根與系數關系的結論稱為「韋達定理」)。
韋達從事數學研究只是出於愛好,然而他卻完成了代數和三角學方面的巨著。他的《應用於三角形的數學定律》(1579年)是韋達最早的數學專著之一,可能是西歐第一部論述6種三角形函數解平面和球面三角形方法的系統著作。他被稱為現代代數符號之父。
韋達還專門寫了一篇論文"截角術",初步討論了正弦,餘弦,正切弦的一般公式,首次把代數變換應用到三角學中。他考慮含有倍角的方程,具體給出了將COS(nx)表示成COS(x)的函數並給出當n≤11等於任意正整數的倍角表達式了。
(8)數學方程中元次是由誰創造的擴展閱讀:
早在3600年前,古埃及人寫在草紙上的數學問題中,就涉及了方程中含有未知數的等式。
公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。
方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。
卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?
(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)
白話翻譯:卷第八(一)為:現在有上禾三點,中禾二點,下禾一點,實際上三十九斗;上禾二點,中禾三點,下禾一點,實際上三十四斗;上禾一點,中禾二點,下禾三點,實際上兩個十六斗。向上、中、下禾是一點各是多少?
(現在有上等黍三捆、中等黍二捆、下等黍子捆,打出來的飯共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出來的飯共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出來的飯共有二十六斗。問1捆上等人黍、一捆中等黍、1把下等人黍各能打響多少斗黃米?)
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
白話翻譯:他回答說:上禾一點,九斗、四分一的一,中禾一點,四斗、四分一的一,下禾一點,二斗、四分之三斗。
方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。
求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。
白話翻譯:方程方法是:設置上禾三點,中禾二點,下禾一點,實際上三十九斗,在右邊。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不盡的遍乘左行而以直任。左下方禾不盡的,上為法,以下是真實。實立即下禾的事實。
求中禾,因法乘中走下實,而除下禾的事實。我像中禾持數而一,就是中禾的事實。求上禾也因法乘右邊走下實,而除下禾、中禾的事實。我像上禾持數而一,登上禾的事實。實際上都像法,各得一斗。
以上是出自《九章算術》中的三元一次方程組,並展示了用「遍乘直除」來消元以解此方程組。
魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量注釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。
㈨ 數學方程的" 元""次"是誰 發明的
解:數學方程的元次是康熙首先提出的。