當前位置:首頁 » 新型創造 » 核磁共振發明者

核磁共振發明者

發布時間: 2021-01-18 03:16:14

⑴ 核磁共振的發明

美國伊利諾伊大學的Paul
C.
Lauterbur和英國諾丁漢山大學的Sir
Peter
Mansfield,由於其在核磁共振研究中的重大貢回獻,共同獲得了答2003年諾貝爾生理及醫學獎。他們的研究成果現在已被醫生們常規使用,以揭示人體內部驚人的秘密。這項獲獎的研究是Lauterbur在紐約長島Stony
Brook大學時所做的。

⑵ 磁共振是怎麼發明的(誰發明的)

磁共振是在固體微觀量子理論和無線電微波電子學技術發展的基礎上被發現的,德國西門子公司是第一台醫用磁共振機的發明者。

1945年首先在順磁性Mn鹽的水溶液中觀測到順磁共振,第二年,又分別用吸收和感應的方法發現了石蠟和水中質子的核磁共振,用波導諧振腔方法發現了Fe、Co和Ni薄片的鐵磁共振。

1950年在室溫附近觀測到固體Cr2O3的反鐵磁共振,1953年在半導體硅和鍺中觀測到電子和空穴的迴旋共振,1953年和1955年先後從理論上預言和實驗上觀測到亞鐵磁共振,隨後又發現了磁有序系統中高次模式的靜磁型共振(1957)和自旋波共振(1958)。

1956年開始研究兩種磁共振耦合的磁雙共振現象,這些磁共振被發現後,便在物理、化學、生物等基礎學科和微波技術、量子電子學等新技術中得到了廣泛的應用。

例如順磁固體量子放大器,各種鐵氧體微波器件,核磁共振譜分析技術和核磁共振成像技術及利用磁共振方法對順磁晶體的晶場和能級結構、半導體的能帶結構和生物分子結構等的研究。

原子核和基本粒子的自旋、磁矩參數的測定也是以各種磁共振原理為基礎發展起來的。

磁共振成像技術由於其無輻射、解析度高等優點被廣泛的應用於臨床醫學與醫學研究,一些先進的設備製造商與研究人員一起,不斷優化磁共振掃描儀的性能、開發新的組件。

(2)核磁共振發明者擴展閱讀:

磁共振技術與一般的物理化學方法不同, 它能在不破壞樣品的條件下,利用構成分子的原子核本身的磁矩特徵,精確快速地給被測樣品定性、定量、定結構。

磁共振能提供其他理化方法所不能得到的許多重要參數,基於核磁共振原理而設計的核磁共振波譜儀能夠研究物質的化學位移,以探討價電子對核的屏蔽作用來分析各種化學基團的存在。

能夠研究物質的自旋一自旋禍合,以探討各種化學基團的相互作用關系、作用力和空間構型,能夠測試物質反應的動力學、中和反應以及質子交換反應等,還可以通過對譜線的面積、寬度等的分析以燎解被測物質在各種因素的影響下,其結構的相應變化規律性。

⑶ mri檢查是啥原理,是誰發明的

1930年代,伊西多·拉比(Isidor Rabi)發現在磁場中的原子核會沿磁場方向呈正向或反向有序平行排列,而施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎。1946年,費利克斯·布洛赫(Felix Bloch)和愛德華·米爾斯·珀塞耳(Edward Mills Purcell)發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1952年度諾貝爾物理學獎。

人們在發現核磁共振現象之後很快就產生了實際用途,化學家利用分子結構對氫原子周圍磁場產生的影響,發展出了核磁共振譜,用於解析分子結構,隨著時間的推移,核磁共振譜技術從最初的一維氫譜發展到13C譜、二維核磁共振譜等高級譜圖,核磁共振技術解析分子結構的能力也越來越強,進入1990年代以後,發展出了依靠核磁共振信息確定蛋白質分子三級結構的技術,使得溶液相蛋白質分子結構的精確測定成為可能。

另一方面,醫學家們發現水分子中的氫原子可以產生核磁共振現象,利用這一現象可以獲取人體內水分子分布的信息,從而精確繪制人體內部結構,在這一理論基礎上1969年,紐約州立大學南部醫學中心的達馬迪安通過測核磁共振的弛豫時間成功的將小鼠的癌細胞與正常組織細胞區分開來,在達馬迪安新技術的啟發下紐約州立大學石溪分校的物理學家保羅·勞特伯爾於1973年開發出了基於核磁共振現象的成像技術(MRI),並且應用他的設備成功地繪制出了一個活體蛤蜊地內部結構圖像。勞特伯爾之後,MRI技術日趨成熟,應用范圍日益廣泛,成為一項常規的醫學檢測手段,廣泛應用於帕金森氏症、多發性硬化症等腦部與脊椎病變以及癌症的治療和診斷。2003年,保羅·勞特伯爾和英國諾丁漢大學教授彼得·曼斯菲爾德因為他們在核磁共振成像技術方面的貢獻獲得了當年度的諾貝爾生理學或醫學獎。

核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的進動。

根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定。

⑷ 共振器的發明者是誰

1952年,斯坦福大學的費力克斯博士Dr.FelixBlock和哈佛大學的愛德華珀塞爾博Dr.EdwardPurcell,在核磁共振理論方面獲得了諾貝爾獎。1977,范德瓦爾斯VanVleck在「磁性電子結構和混亂系統的基本理論研究」方面,和菲力浦安PhilipAnderson一起獲物理學的諾貝爾獎。 而凱恩博Dr.Kane發揚光大了核磁共振理論,引入了釹等多種催化劑來重新調整排列燃油分子碳氫鏈的結構,這些受人尊敬的科學家們已經證明了:磁力是可以影響和改變分子結構的,但僅靠磁力作用來節油是不行的。而後,凱恩博士Dr.Kane在他的另一項偉大發明:無線尋呼機,也就是我們所說的BP機之後,發明了第一代汽車節油器FUELMAX福爾瑪斯,直到第二代超級福爾瑪斯汽車節油器SUPER
FUELMAX。其工作原理為一已申請專利的釹超導體磁性頻率共振器,產生特定的共振頻率。當裝置於供油管上時,會破壞流過的燃油分子的碳氫鏈,使燃油結構分子在釹化合物催化作用下,在產生的特定共振作用下重新排列,原來燃油分子紊亂無序的運動排列變為排列整齊的運動直線,使燃油的燃燒變得充分而有效率。超級福爾瑪斯汽車節油器SUPER FUELMAX是由獲得專利的合金製成的。它是由輻射、動力、軟粒子感應、高斯、矯磁力、自供能源、共振譜組成的結合體,它的設計參數及製造過程兩項專利在全世界受到保護。SuperFuelMAX超級福爾瑪斯汽車節油器是美國本土品牌,擁有多項世界專利及權威認證,暢銷100多個國家和地區,是全球銷量第一的汽車節油產品,已有25年的輝煌歷史,其第三代ODIC FuelMATE超級傲迪·福爾瑪特汽車節油器,是美國IRD公司針對中國地區燃油質量等級進行參數調整,從而開發出最適應中國車輛的超級汽車節油器。

⑸ CT,MRI的發明人是物理學家,工程專家說明了什麼

我先說幾句,CT成像是在X射線的基礎上運用計算機技術,使平面重疊的X像可以清晰一個平面一個平面的掃描.磁共振是原子核在強磁場中共振所得到的信號,然後經過圖象重建得到的,它可以在人體的各個平面成像.說白了,它的成像和掃描部位質子的多少有關.他們的區別主要是原理,設備,其成像特點,檢查技術,圖象的分析與診斷,及他們在臨床的應用.
CT的基本原理一、CT成像過程

X線成像是利用人體對X線的選擇性吸收原理,當X線透過人體後在熒光屏上或膠片上形成組織和器官的圖像,CT的成像也與之相仿。

CT掃描的過程是由高度準直的X線束環繞人體某一檢查部位作360度的橫斷面掃描的過程。檢查床平移時,X線從不同方向照射病人,穿過人體的X線束因有部分光子被人體吸收而發生衰減,未被吸收的光子穿透人體再經後準直由探測器接收。探測器接受了穿過人體以後的強弱不同的X線,轉換為自信號由數據採集系統(data acquisition system,DAS)進行採集。大量接收到模擬信號信息通過模數(A/D)轉換器轉換為數字信號輸入電子計算機進行處理運算。經過初步處理的成為採集的原始數據(raw data),原始數據經過捲曲、濾過處理,其後稱為濾過後的原始數據(6lteredrawdata)。由數模(D/A)轉換器通過不同的灰階在顯示屏上顯像從而獲得該部位橫斷面的解剖結構圖象,即CT橫斷面圖象。

因此,CT檢查得到的是反應人體組織結構分布的數字影象,從根本上克服了常規X線檢查圖像前後重疊的缺陷,使醫學影像診斷學檢查有了質的飛躍。

二、CT成像的基本原理

通常,探測器所接受到的射線信號的強弱,取決於該部位的人體截面內組織的密度。密度高的組織,例如骨骼吸收X線較多,探測器接收到的信號較弱;密度較低的組織,例如脂肪、空腔臟器等吸收X線較少,探測器獲得的信號較強。這種不同組織對X線吸收值不同的性質可用組織的吸收系數μ來表示,所以探測器所接收到的信號強弱所反映的是人體組織不同的μ值。而CT正是利用X線穿透人體後的衰減特性作為其診斷疾病的依據。

X線穿透人體後的衰減遵守指數衰減規律I=I0e-μd。

式中:I為通過人體吸收後衰減的X線強度;I0為入射X線強度;μ為接收X線照射組織的線性吸收系數;d為受檢部位人體組織的厚度。

通過電子計算機運算列出人體組織受檢層面的吸收系數,並將之分布在合成圖象的柵狀陣列即矩陣的方格(陣元)內。矩陣上每個陣元相當於重建圖象上的一個圖象點,稱為像素(pixel)。CT的成像過程就是求出每個像素的衰減系數的過程。如果像素越小、探測器數目越多,計算機所測出的衰減系數就越多、越精確,重建出的圖象也就越清晰。目前,CT機的矩陣多為256×256,512×512,其乘積即為每個矩陣所包含的像素數
核磁共振成像
維基網路,自由的網路全書
跳轉到: 導航, 搜索

人腦縱切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,簡稱NMRI),又稱自旋成像(spin imaging),也稱磁共振成像、磁振造影(Magnetic Resonance Imaging,簡稱MRI),是利用核磁共振(nuclear magnetic resonnance,簡稱NMR)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。

將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。

從核磁共振現象發現到MRI技術成熟這幾十年期間,有關核磁共振的研究領域曾在三個領域(物理、化學、生理學或醫學)內獲得了6次諾貝爾獎,足以說明此領域及其衍生技術的重要性。

目錄 [隱藏]
1 物理原理
1.1 原理概述
1.2 數學運算
2 系統組成
2.1 NMR實驗裝置
2.2 MRI系統的組成
2.2.1 磁鐵系統
2.2.2 射頻系統
2.2.3 計算機圖像重建系統
2.3 MRI的基本方法
3 技術應用
3.1 MRI在醫學上的應用
3.1.1 原理概述
3.1.2 磁共振成像的優點
3.1.3 MRI的缺點及可能存在的危害
3.2 MRI在化學領域的應用
3.3 磁共振成像的其他進展
4 諾貝爾獲獎者的貢獻
5 未來展望
6 相關條目
6.1 磁化准備
6.2 取像方法
6.3 醫學生理性應用
7 參考文獻

[編輯]
物理原理

通過一個磁共振成像掃描人類大腦獲得的一個連續切片的動畫,由頭頂開始,一直到基部。[編輯]
原理概述
核磁共振成像是隨著計算機技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。醫生考慮到患者對「核」的恐懼心理,故常將這門技術稱為磁共振成像。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經計算機處理而成像的。

原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。

核磁共振成像的「核」指的是氫原子核,因為人體的約70%是由水組成的,MRI即依賴水中氫原子。當把物體放置在磁場中,用適當的電磁波照射它,使之共振,然後分析它釋放的電磁波,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。

[編輯]
數學運算
原子核帶正電並有自旋運動,其自旋運動必將產生磁矩,稱為核磁矩。研究表明,核磁矩μ與原子核的自旋角動量S 成正比,即

式中γ 為比例系數,稱為原子核的旋磁比。在外磁場中,原子核自旋角動量的空間取向是量子化的,它在外磁場方向上的投影值可表示為

m為核自旋量子數。依據核磁矩與自旋角動量的關系,核磁矩在外磁場中的取向也是量子化的,它在磁場方向上的投影值為

對於不同的核,m分別取整數或半整數。在外磁場中,具有磁矩的原子核具有相應的能量,其數值可表示為

式中B為磁感應強度。可見,原子核在外磁場中的能量也是量子化的。由於磁矩和磁場的相互作用,自旋能量分裂成一系列分立的能級,相鄰的兩個能級之差ΔE = γhB。用頻率適當的電磁輻射照射原子核,如果電磁輻射光子能量hν恰好為兩相鄰核能級之差ΔE,則原子核就會吸收這個光子,發生核磁共振的頻率條件是:

式中ν為頻率,ω為角頻率。對於確定的核,旋磁比γ可被精確地測定。可見,通過測定核磁共振時輻射場的頻率ν,就能確定磁感應強度;反之,若已知磁感應強度,即可確定核的共振頻率。

[編輯]
系統組成
[編輯]
NMR實驗裝置
採用調節頻率的方法來達到核磁共振。由線圈向樣品發射電磁波,調制振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。

[編輯]
MRI系統的組成
[編輯]
磁鐵系統
靜磁場:當前臨床所用超導磁鐵,磁場強度有0.5到4.0T,常見的為1.5T和3.0T,另有勻磁線圈(shim coil)協助達到高均勻度。
梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
[編輯]
射頻系統
射頻(RF)發生器:產生短而強的射頻場,以脈沖方式加到樣品上,使樣品中的氫核產生NMR現象。
射頻(RF)接收器:接收NMR信號,放大後進入圖像處理系統。
[編輯]
計算機圖像重建系統
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數學信號,根據與觀察層面各體素的對應關系,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。

[編輯]
MRI的基本方法
選片梯度場Gz
相編碼和頻率編碼
圖像重建
[編輯]
技術應用

3D MRI[編輯]
MRI在醫學上的應用
[編輯]
原理概述
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。

當施加一射頻脈沖信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的信息。這樣,病理變化就能被記錄下來。

人體2/3的重量為水分,如此高的比例正是磁共振成像技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水分形態的變化,即可由磁共振圖像反應出來。

MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關系,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。

[編輯]
磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:

對人體沒有游離輻射損傷;
各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位;
能診斷心臟病變,CT因掃描速度慢而難以勝任;
對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

人類腹部冠狀切面磁共振影像[編輯]
MRI的缺點及可能存在的危害
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:

和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振檢查仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
對肺部的檢查不優於X射線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
對胃腸道的病變不如內窺鏡檢查;
掃描時間長,空間分辨力不夠理想;
由於強磁場的原因,MRI對諸如體內有磁金屬或起搏器的特殊病人卻不能適用。
MRI系統可能對人體造成傷害的因素主要包括以下方面:

強靜磁場:在有鐵磁性物質存在的情況下,不論是埋植在患者體內還是在磁場范圍內,都可能是危險因素;
隨時間變化的梯度場:可在受試者體內誘導產生電場而興奮神經或肌肉。外周神經興奮是梯度場安全的上限指標。在足夠強度下,可以產生外周神經興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫;
射頻場(RF)的致熱效應:在MRI聚焦或測量過程中所用到的大角度射頻場發射,其電磁能量在患者組織內轉化成熱能,使組織溫度升高。RF的致熱效應需要進一步探討,臨床掃瞄器對於射頻能量有所謂「特定吸收率」(specific absorption rate, SAR)的限制;
雜訊:MRI運行過程中產生的各種雜訊,可能使某些患者的聽力受到損傷;
造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發生率在2%-4%。
[編輯]
MRI在化學領域的應用
MRI在化學領域的應用沒有醫學領域那麼廣泛,主要是因為技術上的難題及成像材料上的困難,目前主要應用於以下幾個方面:

在高分子化學領域,如碳纖維增強環氧樹脂的研究、固態反應的空間有向性研究、聚合物中溶劑擴散的研究、聚合物硫化及彈性體的均勻性研究等;
在金屬陶瓷中,通過對多孔結構的研究來檢測陶瓷製品中存在的砂眼;
在火箭燃料中,用於探測固體燃料中的缺陷以及填充物、增塑劑和推進劑的分布情況;
在石油化學方面,主要側重於研究流體在岩石中的分布狀態和流通性以及對油藏描述與強化採油機理的研究。
[編輯]
磁共振成像的其他進展
核磁共振分析技術是通過核磁共振譜線特徵參數(如譜線寬度、譜線輪廓形狀、譜線面積、譜線位置等)的測定來分析物質的分子結構與性質。它可以不破壞被測樣品的內部結構,是一種完全無損的檢測方法。同時,它具有非常高的分辨本領和精確度,而且可以用於測量的核也比較多,所有這些都優於其它測量方法。因此,核磁共振技術在物理、化學、醫療、石油化工、考古等方面獲得了廣泛的應用。

磁共振顯微術(MR micros, MRM/μMRI)是MRI技術中稍微晚一些發展起來的技術,MRM最高空間解析度是4μm,已經可以接近一般光學顯微鏡像的水平。MRM已經非常普遍地用作疾病和葯物的動物模型研究。
活體磁共振能譜(in vivo MR spectros, MRS)能夠測定動物或人體某一指定部位的NMR譜,從而直接辨認和分析其中的化學成分。
[編輯]
諾貝爾獲獎者的貢獻
2003年10月6日,瑞典卡羅林斯卡醫學院宣布,2003年諾貝爾生理學或醫學獎授予美國化學家保羅·勞特布爾(Paul C. Lauterbur)和英國物理學家彼得·曼斯菲爾德(Peter Mansfield),以表彰他們在醫學診斷和研究領域內所使用的核磁共振成像技術領域的突破性成就。

勞特布爾的貢獻是,在主磁場內附加一個不均勻的磁場,把梯度引入磁場中,從而創造了一種可視的用其他技術手段卻看不到的物質內部結構的二維結構圖像。他描述了怎樣把梯度磁體添加到主磁體中,然後能看到沉浸在重水中的裝有普通水的試管的交叉截面。除此之外沒有其他圖像技術可以在普通水和重水之間區分圖像。通過引進梯度磁場,可以逐點改變核磁共振電磁波頻率,通過對發射出的電磁波的分析,可以確定其信號來源。

曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場理論,推動了其實際應用。他發現磁共振信號的數學分析方法,為該方法從理論走向應用奠定了基礎。這使得10年後磁共振成像成為臨床診斷的一種現實可行的方法。他利用磁場中的梯度更為精確地顯示共振中的差異。他證明,如何有效而迅速地分析探測到的信號,並且把它們轉化成圖像。曼斯菲爾德還提出了極快速的梯度變化可以獲得瞬間即逝的圖像,即平面回波掃描成像(echo-planar imaging, EPI)技術,成為20世紀90年代開始蓬勃興起的功能磁共振成像(functional MRI, fMRI)研究的主要手段。

雷蒙德·達馬蒂安的「用於癌組織檢測的設備和方法」值得一提的是,2003年諾貝爾物理學獎獲得者們在超導體和超流體理論上做出的開創性貢獻,為獲得2003年度諾貝爾生理學或醫學獎的兩位科學家開發核磁共振掃描儀提供了理論基礎,為核磁共振成像技術鋪平了道路。由於他們的理論工作,核磁共振成像技術才取得了突破,使人體內部器官高清晰度的圖像成為可能。

此外,在2003年10月10日的《紐約時報》和《華盛頓郵報》上,同時出現了佛納(Fonar)公司的一則整版廣告:「雷蒙德·達馬蒂安(Raymond Damadian),應當與彼得·曼斯菲爾德和保羅·勞特布爾分享2003年諾貝爾生理學或醫學獎。沒有他,就沒有核磁共振成像技術。」指責諾貝爾獎委員會「篡改歷史」而引起廣泛爭議。事實上,對MRI的發明權歸屬問題已爭論了許多年,而且爭得頗為激烈。而在學界看來,達馬蒂安更多是一個生意人,而不是科學家。

[編輯]
未來展望
人腦是如何思維的,一直是個謎。而且是科學家們關注的重要課題。而利用MRI的腦功能成像則有助於我們在活體和整體水平上研究人的思維。其中,關於盲童的手能否代替眼睛的研究,是一個很好的樣本。正常人能見到藍天碧水,然後在大腦里構成圖像,形成意境,而從未見過世界的盲童,用手也能摸文字,文字告訴他大千世界,盲童是否也能「看」到呢?專家通過功能性MRI,掃描正常和盲童的大腦,發現盲童也會像正常人一樣,在大腦的視皮質部有很好的激活區。由此可以初步得出結論,盲童通過認知教育,手是可以代替眼睛「看」到外面世界的。

快速掃描技術的研究與應用,將使經典MRI成像方法掃描病人的時間由幾分鍾、十幾分鍾縮短至幾毫秒,使因器官運動對圖像造成的影響忽略不計;MRI血流成像,利用流空效應使MRI圖像上把血管的形態鮮明地呈現出來,使測量血管中血液的流向和流速成為可能;MRI波譜分析可利用高磁場實現人體局部組織的波譜分析技術,從而增加幫助診斷的信息;腦功能成像,利用高磁場共振成像研究腦的功能及其發生機制是腦科學中最重要的課題。有理由相信,MRI將發展成為思維閱讀器。

20世紀中葉至今,信息技術和生命科學是發展最活躍的兩個領域,專家相信,作為這兩者結合物的MRI技術,繼續向微觀和功能檢查上發展,對揭示生命的奧秘將發揮更大的作用。

[編輯]
相關條目
核磁共振
射頻
射頻線圈
梯度磁場
[編輯]
磁化准備
反轉回復(inversion recovery)
飽和回覆(saturation recovery)
驅動平衡(driven equilibrium)
[編輯]
取像方法
自旋迴波(spin echo)
梯度回波(gradient echo)
平行成像(parallel imaging)
面回波成像(echo-planar imaging, EPI)
定常態自由進動成像(steady-state free precession imaging, SSFP)
[編輯]
醫學生理性應用
磁振血管攝影(MR angiography)
磁振膽胰攝影(MR cholangiopancreatogram, MRCP)
擴散權重影像(diffusion-weighted image)
擴散張量影像(diffusion tensor image)
灌流權重影像(perfusion-weighted image)
功能性磁共振成像(functional MRI, fMRI)
[編輯]
參考文獻
傅傑青〈核磁共振——獲得諾貝爾獎次數最多的一個科學專題〉《自然雜志》, 2003, (06):357-261
別業廣、呂樺〈再談核磁共振在醫學方面的應用〉《物理與工程》, 2004, (02):34, 61
金永君、艾延寶〈核磁共振技術及應用〉《物理與工程》, 2002, (01):47-48, 50
劉東華、李顯耀、孫朝暉〈核磁共振成像〉《大學物理》, 1997, (10):36-39, 29
阮萍〈核磁共振成像及其醫學應用〉《廣西物理》, 1999, (02):50-53, 28
Lauterbur P C Nature, 1973, 242:190
黃衛華〈走近核磁共振〉《醫葯與保健》, 2004, (03):15
葉朝輝〈磁共振成像新進展〉《物理》, 2004, (01):12-17
田建廣、劉買利、夏照帆、葉朝輝〈磁共振成像的安全性〉《波譜學雜志》, 2002, (06):505-511
蔣子江〈核磁共振成像NMRI在化學領域中的應用〉《化學世界》, 1995, (11):563-565
樊慶福〈核磁共振成像與諾貝爾獎〉《上海生物醫學工程》, 2003, (04):封三

⑹ 誰發明了核磁共振

核磁共來振檢查發明者獲自得諾貝爾獎. 美國伊利諾伊大學的Paul C. Lauterbur和英國諾丁漢山大學的Sir Peter Mansfield,由於其在核磁共振研究中的重大貢獻,共同獲得了2003年諾貝爾生理及醫學獎。

⑺ 磁共振最先由哪國人發明

據了解,瑞典卡羅林斯卡醫學院2003年10月6日宣布,2003年諾貝爾生理學或醫學獎授予美國科學家內保羅·勞特布爾容和英國科學家彼得·曼斯菲爾德,以表彰他們在核磁共振成像技術領域的突破性成就。他們的成就是醫學診斷和研究領域的重大成果。

⑻ 核磁共振的發明者

1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向呈正專向或反向有序平行排列,而屬施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎。
1946年兩位美國科學家布洛赫和珀塞爾發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1952年度諾貝爾物理學獎。
1946年,美國哈佛大學的珀塞爾和斯坦福大學的布洛赫宣布,他們發現了核磁共振NMR。兩人因此獲得了1952年諾貝爾獎。核磁共振是原子核的磁矩在恆定磁場和高頻磁場(處在無線電波波段)同時作用下,當滿足一定條件時,會產生共振吸收現象。核磁共振很快成為一種探索、研究物質微觀結構和性質的高新技術。目前,核磁共振已在物理、化學、材料科學、生命科學和醫學等領域中得到了廣泛應用。

⑼ 磁共振成像技術的發明人是美國的 ( )和英國 的( )

磁共振成像技術的發明人是美國的保羅·勞特布爾和英國的彼得·曼斯菲爾德。

1985年至今,保羅·勞特布爾擔任美國伊利諾伊大學生物醫學核磁共振實驗室主任。因在核磁共振成像技術領域的突破性成就,和英國科學家彼得·曼斯菲爾德共同獲得2003年度諾貝爾生理學或醫學獎。

1964年到英國諾丁漢大學物理系擔任講師,彼得·曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場的理論,為核磁共振成像技術從理論到應用奠定了基礎。

(9)核磁共振發明者擴展閱讀

磁共振成像原理:

原子核自旋,有角動量。由於核帶電荷,它們的自旋就產生磁矩。當原子核置於靜磁場中,本來是隨機取向的雙極磁體受磁場力的作用,與磁場作同一取向。

以質子即氫的主要同位素為例,它只能有兩種基本狀態:取向「平行」和「反向平行」,他們分別對應於低能和高能狀態。精確分析證明,自旋並不完全與磁場趨向一致,而是傾斜一個角度θ。這樣,雙極磁體開始環繞磁場進動。

它們之間的關系滿足拉莫爾關系:ω0=γB0,即進動角頻率ω0是磁場強度B0與磁旋比γ的積。γ是每種核素的一個基本物理常數。氫的主要同位素,質子,在人體中豐度大,而且它的磁矩便於檢測,因此最適合從它得到核磁共振圖像。

⑽ 核磁共振儀有啥用 誰發明的

核磁共振儀的發明核磁共振儀廣泛用於有機物質的研究,化學反應動力學,高分子化學以及醫學,葯學和生物學等領域。20年來,由於這一技術的飛速發展,它已經成為化學領域最重要的分析技術之一。早在1924年,奧地利物理學家泡里就提出了某些核可能有自旋和磁矩。"自旋"一詞起源於帶電粒子,如質子、電子繞自身軸線旋轉的經典圖像。這種運動必然產生角動量和磁偶極矩,因為旋轉的電荷相當於一個電流線圈,由經典電磁理論可知它們要產生磁場。當然這樣的解釋只是比較形象的比擬,實際情況要比這復雜得多。原子核自旋的情況可用自旋量子數I表示。自旋量子獲得,質量數的原子序數之間有以下關系:質量數原子序數自旋量子數(I)奇數奇數或偶數1/2,3/2,5/2……偶數偶數0偶數奇數1,2,3……1>0的原子核在自旋時會產生磁場;I為1/2的核,其電荷分布是球狀;而I≥1的核,其電荷分布不是球狀,因此有磁極矩。I為0的原子核置於強大的磁場中,在強磁場的作用下,就會發生能級分裂,如果用一個與其能級相適應的頻率的電磁輻射時,就會發生共振吸收,核磁共振的名稱就是來源於此。斯特恩和蓋拉赫1924年在原子束實驗中觀察到了鋰原子和銀原子的磁偏轉,並測量了未成對電子引起的原子磁矩。1933年斯特恩等人測量了質子的磁矩。1939年比拉第一次進行了核磁共振的實驗。1946年美國的普西爾和布少赫同時提出質子核磁共振的實驗報告,他們首先用核磁共振的方法研究了固體物質、原子核的性質、原子核之間及核周圍環境能量交換等問題。為此他們兩位獲得了1952年諾貝爾物理獎。50年代核磁共振方法開始應用於化學領域,1950年斯坦福大學的兩位物理學家普羅克特和虞以NH4NO3水溶液作為氮原子核源,在測定14N的磁矩時,發現兩個性質截然不同的共振信號,從而發現了同一種原子核可隨其化學環境的不同吸收能量的共振條件也不同,即核磁共振頻率不同。這種現象稱為"化學位移"。這是由於原子核外電子形成的磁場與外加磁場相互作用的結果。化學位移是鑒別官能團的重要依據。因為化學位移的大小與鍵的性質和鍵合的元素種類等有密切的關系。此外,各組原子核之間的磁相互作用構成自旋──自旋耦合。這種作用常常使得化學位移不同的各組原子核在共振吸收圖上顯示的不是單峰而是多重峰,這種情況是由分子中鄰近原子核的數目,距離用對稱性等因素決定,因此它有助於提示整個分子的。由於上述成果高分辨核磁共振儀得以問世。開始測量的核主要是氫核,這是由於它的核磁共振信號較強。隨著儀器性能的提高,13C,31P,15N等的核也能測量,儀器使用的磁場也越來越強。50年代製造出IT(特拉斯)磁場,60年代製造出2T的磁場,並利用起導現象製造出5T的起導磁體。70年代造出8T磁場。現在核磁共振儀已經被應用到從小分子到蛋白質和核酸的各種各樣化學系統中。

熱點內容
美發店認證 發布:2021-03-16 21:43:38 瀏覽:443
物業糾紛原因 發布:2021-03-16 21:42:46 瀏覽:474
全國著名不孕不育醫院 發布:2021-03-16 21:42:24 瀏覽:679
知名明星確診 發布:2021-03-16 21:42:04 瀏覽:14
ipad大專有用嗎 發布:2021-03-16 21:40:58 瀏覽:670
公務員協議班值得嗎 發布:2021-03-16 21:40:00 瀏覽:21
知名書店品牌 發布:2021-03-16 21:39:09 瀏覽:949
q雷授權碼在哪裡買 發布:2021-03-16 21:38:44 瀏覽:852
圖書天貓轉讓 發布:2021-03-16 21:38:26 瀏覽:707
寶寶水杯品牌 發布:2021-03-16 21:35:56 瀏覽:837