當前位置:首頁 » 合同協議 » 量子密碼協議

量子密碼協議

發布時間: 2021-03-15 16:45:31

A. 誰幫忙找下關於密碼的資料啊,,我要辦講座..全點啊

密碼大事記

公元前5世紀,古希臘斯巴達出現原始的密碼器,用一條帶子纏繞在一根木棍上,沿木棍縱軸方向寫好明文,解下來的帶子上就只有雜亂無章的密文字母。解密者只需找到相同直徑的木棍,再把帶子纏上去,沿木棍縱軸方向即可讀出有意義的明文。這是最早的換位密碼術。

公元前1世紀,著名的愷撒(Caesar)密碼被用於高盧戰爭中,這是一種簡單易行的單字母替代密碼。

公元9世紀,阿拉伯的密碼學家阿爾·金迪(al' Kindi 也被稱為伊沙克 Ishaq,(801?~873年),同時還是天文學家、哲學家、化學家和音樂理論家)提出解密的頻度分析方法,通過分析計算密文字元出現的頻率破譯密碼。

公元16世紀中期,義大利的數學家卡爾達諾(G.Cardano,1501—1576)發明了卡爾達諾漏格板,覆蓋在密文上,可從漏格中讀出明文,這是較早的一種分置式密碼。

公元16世紀晚期,英國的菲利普斯(Philips)利用頻度分析法成功破解蘇格蘭女王瑪麗的密碼信,信中策劃暗殺英國女王伊麗莎白,這次解密將瑪麗送上了斷頭台。
幾乎在同一時期,法國外交官維熱納爾(或譯為維瓊內爾) Blaise de Vigenere(1523-1596)提出著名的維熱納爾方陣密表和維熱納爾密碼(Vigenerecypher),這是一種多表加密的替代密碼,可使阿爾—金迪和菲利普斯的頻度分析法失效。

公元1863,普魯士少校卡西斯基(Kasiski)首次從關鍵詞的長度著手將它破解。英國的巴貝奇(Charles Babbage)通過仔細分析編碼字母的結構也將維熱納爾密碼破解。

公元20世紀初,第一次世界大戰進行到關鍵時刻,英國破譯密碼的專門機構「40號房間」利用繳獲的德國密碼本破譯了著名的「齊默爾曼電報」,促使美國放棄中立參戰,改變了戰爭進程。

大戰快結束時,准確地說是1918年,美國數學家吉爾伯特·維那姆發明一次性便箋密碼,它是一種理論上絕對無法破譯的加密系統,被譽為密碼編碼學的聖杯。但產生和分發大量隨機密鑰的困難使它的實際應用受到很大限制,從另一方面來說安全性也更加無法保證。

第二次世界大戰中,在破譯德國著名的「恩格瑪(Enigma)」密碼機密碼過程中,原本是以語言學家和人文學者為主的解碼團隊中加入了數學家和科學家。電腦之父亞倫·圖靈(Alan Mathison Turing)就是在這個時候加入了解碼隊伍,發明了一套更高明的解碼方法。同時,這支優秀的隊伍設計了人類的第一部電腦來協助破解工作。顯然,越來越普及的計算機也是軍工轉民用產品。美國人破譯了被稱為「紫密」的日本「九七式」密碼機密碼。靠前者,德國的許多重大軍事行動對盟軍都不成為秘密;靠後者,美軍炸死了偷襲珍珠港的元兇日本艦隊總司令山本五十六。

同樣在二次世界大戰中,印第安納瓦霍土著語言被美軍用作密碼,從吳宇森導演的《風語者》Windtalkers中能窺其一二。所謂風語者,是指美國二戰時候特別征摹使用的印第安納瓦約(Navajo)通信兵。在二次世界大戰日美的太平洋戰場上,美國海軍軍部讓北墨西哥和亞歷桑那印第安納瓦約族人使用約瓦納語進行情報傳遞。納瓦約語的語法、音調及詞彙都極為獨特,不為世人所知道,當時納瓦約族以外的美國人中,能聽懂這種語言的也就一二十人。這是密碼學和語言學的成功結合,納瓦霍語密碼成為歷史上從未被破譯的密碼。

1975年1月15日,對計算機系統和網路進行加密的DES(Data Encryption Standard數據加密標准)由美國國家標准局頒布為國家標准,這是密碼術歷史上一個具有里程碑意義的事件。

1976年,當時在美國斯坦福大學的迪菲(Diffie)和赫爾曼(Hellman)兩人提出了公開密鑰密碼的新思想(論文"New Direction in Cryptography"),把密鑰分為加密的公鑰和解密的私鑰,這是密碼學的一場革命。

1977年,美國的里維斯特(Ronald Rivest)、沙米爾(Adi Shamir)和阿德勒曼(Len Adleman)提出第一個較完善的公鑰密碼體制——RSA體制,這是一種建立在大數因子分解基礎上的演算法。

1985年,英國牛津大學物理學家戴維·多伊奇(David Deutsch)提出量子計算機的初步設想,這種計算機一旦造出來,可在30秒鍾內完成傳統計算機要花上100億年才能完成的大數因子分解,從而破解RSA運用這個大數產生公鑰來加密的信息。

同一年,美國的貝內特(Bennet)根據他關於量子密碼術的協議,在實驗室第一次實現了量子密碼加密信息的通信。盡管通信距離只有30厘米,但它證明了量子密碼術的實用性。與一次性便箋密碼結合,同樣利用量子的神奇物理特性,可產生連量子計算機也無法破譯的絕對安全的密碼。

2003,位於日內瓦的id Quantique公司和位於紐約的MagiQ技術公司,推出了傳送量子密鑰的距離超越了貝內特實驗中30厘米的商業產品。日本電氣公司在創紀錄的150公里傳送距離的演示後,最早將在明年向市場推出產品。IBM、富士通和東芝等企業也在積極進行研發。目前,市面上的產品能夠將密鑰通過光纖傳送幾十公里。美國的國家安全局和美聯儲都在考慮購買這種產品。MagiQ公司的一套系統價格在7萬美元到10萬美元之間。

http://dev.csdn.net/article/62/62594.shtm

B. 有關密碼演算法的幾個問題

加密演算法

加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。

對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。

不對稱加密演算法 不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。

不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

加密技術

加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。

非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。

PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。

數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。

PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。

加密的未來趨勢

盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。

在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。

由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。

目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。

C. 急求:電子商務安全協議的發展趨勢

隨著技術和觀念的日新月異,網路購物也以其便宜,豐富和方便的特性,成為越來越多的人購物方式之一。最近幾年尤其08年更是隨著中國網民數量的猛增,整個中國的網購市場也突破了千億大關,已經成為國內零售市場的重要部分。也許不久的將來網購會徹底顛覆人的生活方式。將來誰能夠擁有面對終端客戶的平台,誰就掌握了駕馭市場的主動性。
總體策劃
在沒有自己的產品,沒有自己的市場。也沒有自己終端的前提下,在一無所有,僅憑對電子商務粗絡的了解和經驗的前提下,在面對眾多大大小小的電子商務的壓力和競爭下,如何去做自己的電子商務平台,能夠如何讓別知道你的存在。
首先,還要兩條腿走路,前期在沒有任何優勢資源的情況下,如何吸引會員和留住會員將是關鍵。(這主要涉及運營和營銷方面)這是其一:其二,就是規劃網購平台,網站的構架對於網站的建設很重要,是整個網站設計,建設和運營的基礎,也是購物的最主要場所,是直接面對消費者第一平台,因此在設計的時候要想的遠,想的細,為以後的擴充留有餘地,少走彎路。
針對自己首先要面對的消費者,首先要明確自己要賣給誰,賣什麼。以及眾多已經存在並且做得很好的競爭對手來說,必須給網購平台一個清晰的定調:
1:以日用百貨。女性產品和小家電為主,同時兼顧生活必需品,不斷開發新產品。目前很多電子商務做的好都是以3為主,兼顧其他產品,為了避開自己的劣勢,以開發新產品為主。
2:目標客戶群:以需要生活必需品的公司上班族,女性,大學生以及喜歡上網的人群。年齡段在18歲到45歲的人群。還可以在細分。以地區來說:目前,根據一些統計數據來看,網路購物的重點在華東,其次是華南。
3:盈利模式,目前來說就是靠銷售收入來取得盈利是唯一的方式。開始的時候不可能以自己的網夠平台為主,而是通過各種傳統渠道方式和各種電子媒體以及網路來吸引消費者成為會員。可以說,前期基本上還會以傳統模式來帶動網路會員的增加。
4:運營管理:這是最主要的方面,也是能否生存下去的關鍵。主要涉及到以下幾個方面:
A:商品管理。商品是一個電子商務網站生存的基礎,也是客戶需求的動力。開發產品是重中之重,只有開發可更多的客戶喜愛的物美價廉產品,才能吸引客戶和回頭率。這也是網站的生存之本。另外就是商品價格,這是客戶最關心最敏感的關鍵因數之一。目前的產品雷同性相當多,大家做的產品都差不多。在服務差不多的情況下,客戶很在意商品價格。往往低價可以吸引更多的會員客戶,這是除此之外就是要商品的目錄管理,上架管理,資料管理,排序和品牌管理。
B:網站的推廣:需要線上宣傳和線下推廣相結合來進行。開始的時候以傳統和線下為主,比如,可以不定期的走進大學,而且這是最好培養未來穩定會員的方式之一,我們可以針對學生的特點,組織一批適合年輕人和季節的產品,走進大學搞促銷活動。而且這些學生會員,一旦接受,就是將來最穩定的客戶群體之一。有過這樣的例子。
C:促銷管理:需要線上宣傳和線下推廣相結合來進行,贈品:包括電子貨幣,單品贈品、等級送贈品;推薦套餐、最佳組合商品和客戶套購DIY三種形式;特價推薦:限時驚爆、尋寶等活動
D:倉儲物流運輸管理:建立自己的獨立物流和通過第三方平台。
E:支付系統管理:支付流程是比較順暢的,貨到付款、在線支付、銀行電匯、門店付款等,此外貨到付款准備增加移動POS機刷卡服務,在線支付也准備增加分期付款服務等,將更加滿足客戶需求的多樣性;

F:客戶服務管理:尤其是在線客服方面,實現多方面的客戶服務,例如,銷售過程中的咨詢回復、信息提示和導購,售後的訂單跟蹤和客戶回訪,突發事件的處理等,盡最大可能讓客戶滿意度提升
G:會員系統管理:會員營銷是指針對會員進行的主動營銷。進行會員營銷,也就是,在知道我們服務過的客戶是誰,並且知道他們喜歡什麼,他們有可能還需要什麼的情況下,對他們進行針對性的商品推薦。因此,會員營銷必須是建立在客戶分析的基礎上的。不定期的通過郵件簡訊和促銷目錄來聯系會員。保持一定的互動。
5:網站推廣:推廣是提高網站知名度的重要手段。特別是在網站起步的時候,推廣工作做得好,可以讓網站的發展速度提高幾個數量級。
A:網下推廣:根據實際情況來,例如產品線,經營模式,服務特色,發展目標等,網上商城的宣傳和推廣是多點開花
B:網路推廣:1:內部優化:結構優化、關鍵字識別、網頁內容優化;
2:外部優化:合作推廣、有效鏈接等。

任何一個電子商務網站的建設和運營,都必須以客戶為中心,從客戶出發。因此,網上商城的運營設計,需要從前台客戶體驗出發,明確網站管理的思想,並且清晰網站日常管理和經營活動所必須做好的要點每個要點的執行。

D. 激光通訊是量子通信的本質嗎量子糾纏態為啥能傳輸密鑰

量子加密通信在本質上是激光通信?

也許這個引出這個話題的朋友有些誤解,當前傳統意義上的量子通訊並不能做到直接的量子糾纏通訊,畢竟量子疊加態的波函數會隨著測量而坍塌,因而從理論上否決了直接使用量子糾纏通訊的可能!也許這就是很多攻擊量子通訊是掛羊頭賣狗肉的重要論點!但事實上量子通訊從來都沒有標榜過自己是量子糾纏通訊,下面我們就來簡單了解下當前如火如荼開展的量子通訊是個嘛玩意!


其實這混淆了科學研究與商業模式兩個概念,有規定科學研究不能與商業模式相結合嗎?如果有良好的商業應用前景,以良性循環推進與促進科學研究,這不是事半功倍么?難道科學研究真的要和商業行為絕緣?這樣的思維只能固步自封,閉門造車!還要將科學封閉在自我陶醉的圈子裡嗎?這是對科學不負責任,更是對未來不負責任……!

E. 應用密碼學的目錄

目 錄
開篇 密碼學典故
第0章 密碼故事 (1)
0.1重慶大轟炸背後的密碼戰 (1)
0.2 「愛情密碼」貼 (4)
上篇 密碼學原理
第1章 緒論 (7)
1.1 網路信息安全概述 (7)
1.1.1 網路信息安全問題的由來 (7)
1.1.2 網路信息安全問題的根源 (7)
1.1.3 網路信息安全的重要性和緊迫性 (9)
1.2密碼學在網路信息安全中的作用 (10)
1.3密碼學的發展歷史 (11)
1.3.1 古代加密方法(手工階段) (11)
1.3.2 古典密碼(機械階段) (12)
1.3.3 近代密碼(計算機階段) (15)
1.4網路信息安全的機制和安全服務 (16)
1.4.1 安全機制 (16)
1.4.2 安全服務 (17)
1.4.3 安全服務與安全機制之間的關系 (19)
1.5安全性攻擊的主要形式及其分類 (20)
1.5.1 安全性攻擊的主要形式 (20)
1.5.2 安全攻擊形式的分類 (22)
思考題和習題 (22)
第2章密碼學基礎 (24)
2.1密碼學相關概念 (24)
2.2密碼系統 (28)
2.2.1 柯克霍夫原則(Kerckhoff』s Principle) (28)
2.2.2 密碼系統的安全條件 (28)
2.2.3 密碼系統的分類 (30)
2.3安全模型 (31)
2.3.1 網路通信安全模型 (31)
2.3.2 網路訪問安全模型 (31)
2.4密碼體制 (32)
2.4.1 對稱密碼體制(Symmetric Encryption) (32)
2.4.2 非對稱密碼體制(Asymmetric Encryption) (33)
思考題和習題 (35)
第3章 古典密碼 (36)
3.1 隱寫術 (36)
3.2 代替 (39)
3.2.1 代替密碼體制 (40)
3.2.2 代替密碼的實現方法分類 (42)
3.3 換位 (50)
思考題和習題 (51)
第4章密碼學數學引論 (52)
4.1數論 (52)
4.1.1 素數 (52)
4.1.2 模運算 (54)
4.1.3 歐幾里德演算法(Euclidean Algorithm) (56)
4.1.4 擴展的歐幾里德演算法(The Extended Euclidean Algorithm) (58)
4.1.5 費馬(Fermat)定理 (59)
4.1.6 歐拉(Euler)定理 (60)
4.1.7 中國剩餘定理 (61)
4.2群論 (64)
4.2.1 群的概念 (64)
4.2.2 群的性質 (65)
4.3有限域理論 (65)
4.3.1 域和有限域 (65)
4.3.2 有限域中的計算 (66)
4.4計算復雜性理論* (69)
4.4.1 演算法的復雜性 (69)
4.4.2 問題的復雜性 (70)
思考題和習題 (70)
第5章 對稱密碼體制 (72)
5.1 分組密碼 (72)
5.1.1 分組密碼概述 (72)
5.1.2 分組密碼原理 (73)
5.1.3 分組密碼的設計准則* (79)
5.1.4 分組密碼的操作模式 (81)
5.2 數據加密標准(DES) (87)
5.2.1 DES概述 (87)
5.2.2 DES加密原理 (88)
5.3 高級加密標准(AES) (97)
5.3.1 演算法描述 (97)
5.3.2 基本運算 (99)
5.3.3 基本加密變換 (106)
5.3.4 AES的解密 (112)
5.3.5 密鑰擴展 (116)
5.3.6 AES舉例 (119)
5.4 SMS4分組密碼演算法 (121)
5.4.1 演算法描述 (121)
5.4.2 加密實例 (124)
思考題和習題 (125)
第6章 非對稱密碼體制 (126)
6.1 概述 (126)
6.1.1 非對稱密碼體制的提出 (126)
6.1.2 對公鑰密碼體制的要求 (127)
6.1.3 單向陷門函數 (128)
6.1.4 公開密鑰密碼分析 (128)
6.1.5 公開密鑰密碼系統的應用 (129)
6.2 Diffie-Hellman密鑰交換演算法 (130)
6.3 RSA (132)
6.3.1 RSA演算法描述 (132)
6.3.2 RSA演算法的有效實現 (134)
6.3.3 RSA的數字簽名應用 (137)
6.4 橢圓曲線密碼體制ECC (139)
6.4.1 橢圓曲線密碼體制概述 (139)
6.4.2 橢圓曲線的概念和分類 (139)
6.4.3 橢圓曲線的加法規則 (142)
6.4.4 橢圓曲線密碼體制 (153)
6.4.5 橢圓曲線中數據類型的轉換方法* (161)
思考題及習題 (164)
第7章 HASH函數和消息認證 (166)
7.1 HASH函數 (166)
7.1.1 HASH函數的概念 (166)
7.1.2 安全HASH函數的一般結構 (167)
7.1.3 HASH填充 (167)
7.1.4 HASH函數的應用 (168)
7.2 散列演算法 (169)
7.2.1 散列演算法的設計方法 (169)
7.2.2 SHA-1散列演算法 (170)
7.2.3 SHA-256* (177)
7.2.4 SHA-384和SHA-512* (184)
7.2.5 SHA演算法的對比 (188)
7.3 消息認證 (188)
7.3.1 基於消息加密的認證 (189)
7.3.2 基於消息認證碼(MAC)的認證 (191)
7.3.3 基於散列函數(HASH)的認證 (192)
7.3.4 認證協議* (193)
思考題及習題 (200)
第8章 數字簽名 (201)
8.1 概述 (201)
8.1.1 數字簽名的特殊性 (201)
8.1.2 數字簽名的要求 (202)
8.1.3 數字簽名方案描述 (203)
8.1.4 數字簽名的分類 (204)
8.2 數字簽名標准(DSS) (207)
8.2.1 DSA的描述 (208)
8.2.2 使用DSA進行數字簽名的示例 (210)
思考題和習題 (211)
第9章 密鑰管理 (212)
9.1 密鑰的種類與層次式結構 (212)
9.1.1 密鑰的種類 (212)
9.1.2 密鑰管理的層次式結構 (213)
9.2 密鑰管理的生命周期 (215)
9.3 密鑰的生成與安全存儲 (217)
9.3.1 密鑰的生成 (217)
9.3.2 密鑰的安全存儲 (217)
9.4 密鑰的協商與分發 (219)
9.4.1 秘密密鑰的分發 (219)
9.4.2 公開密鑰的分發 (222)
思考題和習題 (227)
第10章 流密碼 (228)
10.1 概述 (228)
10.1.1 流密碼模型 (228)
10.1.2 分組密碼與流密碼的對比 (232)
10.2 線性反饋移位寄存器 (233)
10.3 基於LFSR的流密碼 (234)
10.3.1 基於LFSR的流密碼密鑰流生成器 (234)
10.3.2 基於LFSR的流密碼體制 (235)
10.4 典型流密碼演算法 (236)
10.4.1 RC4 (236)
10.4.2 A5/1 (238)
思考題和習題 (240)
附:RC4演算法的優化實現 (241)
第11章 密碼學的新進展——量子密碼學 (245)
11.1 量子密碼學概述 (245)
11.2 量子密碼學原理 (246)
11.2.1 量子測不準原理 (246)
11.2.2 量子密碼基本原理 (247)
11.3 BB84量子密碼協議 (249)
11.3.1 無雜訊BB84量子密碼協議 (249)
11.3.2 有雜訊BB84量子密碼協議 (251)
11.4 B92量子密碼協議 (254)
11.5 E91量子密碼協議 (255)
11.6 量子密碼分析* (256)
11.6.1 量子密碼的安全性分析 (256)
11.6.2 量子密碼學的優勢 (257)
11.6.3 量子密碼學的技術挑戰 (258)
思考題和習題 (259)
下篇 密碼學應用與實踐
第12章 密碼學與數字通信安全 (260)
12.1 數字通信保密 (261)
12.1.1 保密數字通信系統的組成 (261)
12.1.2 對保密數字通信系統的要求 (262)
12.1.3 保密數字通信系統實例模型 (263)
12.2 第三代移動通信系統(3G)安全與WAP (264)
12.2.1 第三代移動通信系統(3G)安全特性與機制 (264)
12.2.2 WAP的安全實現模型 (267)
12.3 無線區域網安全與WEP (272)
12.3.1 無線區域網與WEP概述 (272)
12.3.2 WEP的加、解密演算法 (272)
12.3.3 無線區域網的認證 (273)
12.3.4 WEP的優、缺點 (275)
12.4 IPSec與VPN (275)
12.4.1 IPSec概述 (275)
12.4.2 IPSec安全體系結構 (277)
12.4.3 VPN (282)
12.5 基於PGP的電子郵件安全實現 (283)
12.5.1 PGP概述 (283)
12.5.2 PGP原理描述 (284)
12.5.3 使用PGP實現電子郵件通信安全 (287)
思考題和習題 (291)
第13章 密碼學與工業網路控制安全 (292)
13.1概述 (292)
13.1.1 潛在的風險 (293)
13.1.2 EPA的安全需求 (294)
13.2EPA體系結構與安全模型 (294)
13.2.1 EPA的體系結構 (294)
13.2.2 EPA的安全原則 (296)
13.2.3 EPA通用安全模型 (297)
13.3EPA安全數據格式* (300)
13.3.1 安全域內的通信 (300)
13.3.2 安全數據格式 (301)
13.4基於DSP的EPA密碼卡方案 (305)
13.4.1 概述 (305)
13.4.2 密碼卡的工作原理 (305)
13.4.3 密碼卡的總體設計 (306)
13.4.4 密碼卡的模擬實現 (307)
思考題和習題 (308)
第14章密碼學與無線感測器網路感知安全 (309)
14.1 概述 (309)
14.4.1 感測器網路體系結構 (309)
14.4.2 感測器節點體系結構 (310)
14.2 無線感測器網路的安全挑戰 (311)
14.3 無線感測器網路的安全需求 (312)
14.3.1 信息安全需求 (312)
14.3.2 通信安全需求 (313)
14.4無線感測器網路可能受到的攻擊分類 (314)
14.4.1 節點的捕獲(物理攻擊) (314)
14.4.2 違反機密性攻擊 (314)
14.4.3 拒絕服務攻擊 (314)
14.4.4 假冒的節點和惡意的數據 (316)
14.4.5 Sybil攻擊 (316)
14.4.6 路由威脅 (316)
14.5 無線感測器網路的安全防禦方法 (316)
14.5.1 物理攻擊的防護 (317)
14.5.2 實現機密性的方法 (317)
14.5.3 密鑰管理 (318)
14.5.4 阻止拒絕服務 (321)
14.5.5 對抗假冒的節點或惡意的數據 (321)
14.5.6 對抗Sybil攻擊的方法 (321)
14.5.7 安全路由 (322)
14.5.8 數據融合安全 (323)
思考題和習題 (324)
第15章 密碼學與無線射頻識別安全 (325)
15.1概述 (325)
15.2 無線射頻識別系統工作原理 (326)
15.3 無線射頻識別系統安全需求 (327)
15.4 無線射頻識別安全機制 (328)
15.4.1 物理方法 (328)
15.4.2 邏輯方法 (329)
15.5 無線射頻識別安全服務 (331)
15.5.1 訪問控制 (331)
15.5.2 標簽認證 (332)
15.5.3 消息加密 (333)
思考題和習題 (336)
第16章 密碼學與電子商務支付安全 (336)
16.1 概述 (336)
16.1.1 電子商務系統面臨的安全威脅 (336)
16.1.2 系統要求的安全服務類型 (336)
16.1.3 電子商務系統中的密碼演算法應用 (343)
16.2 安全認證體系結構 (343)
16.3 安全支付模型 (344)
16.3.1 支付體系結構 (344)
16.3.2 安全交易協議 (345)
16.3.3 SET協議存在的問題及其改進* (355)
思考題和習題 (357)
部分習題參考答案 (358)
參考文獻 (365)

F. 關於密碼的一切

密碼大事記

公元前5世紀,古希臘斯巴達出現原始的密碼器,用一條帶子纏繞在一根木棍上,沿木棍縱軸方向寫好明文,解下來的帶子上就只有雜亂無章的密文字母。解密者只需找到相同直徑的木棍,再把帶子纏上去,沿木棍縱軸方向即可讀出有意義的明文。這是最早的換位密碼術。

公元前1世紀,著名的愷撒(Caesar)密碼被用於高盧戰爭中,這是一種簡單易行的單字母替代密碼。

公元9世紀,阿拉伯的密碼學家阿爾·金迪(al' Kindi 也被稱為伊沙克 Ishaq,(801?~873年),同時還是天文學家、哲學家、化學家和音樂理論家)提出解密的頻度分析方法,通過分析計算密文字元出現的頻率破譯密碼。

公元16世紀中期,義大利的數學家卡爾達諾(G.Cardano,1501—1576)發明了卡爾達諾漏格板,覆蓋在密文上,可從漏格中讀出明文,這是較早的一種分置式密碼。

公元16世紀晚期,英國的菲利普斯(Philips)利用頻度分析法成功破解蘇格蘭女王瑪麗的密碼信,信中策劃暗殺英國女王伊麗莎白,這次解密將瑪麗送上了斷頭台。
幾乎在同一時期,法國外交官維熱納爾(或譯為維瓊內爾) Blaise de Vigenere(1523-1596)提出著名的維熱納爾方陣密表和維熱納爾密碼(Vigenerecypher),這是一種多表加密的替代密碼,可使阿爾—金迪和菲利普斯的頻度分析法失效。

公元1863,普魯士少校卡西斯基(Kasiski)首次從關鍵詞的長度著手將它破解。英國的巴貝奇(Charles Babbage)通過仔細分析編碼字母的結構也將維熱納爾密碼破解。

公元20世紀初,第一次世界大戰進行到關鍵時刻,英國破譯密碼的專門機構「40號房間」利用繳獲的德國密碼本破譯了著名的「齊默爾曼電報」,促使美國放棄中立參戰,改變了戰爭進程。

大戰快結束時,准確地說是1918年,美國數學家吉爾伯特·維那姆發明一次性便箋密碼,它是一種理論上絕對無法破譯的加密系統,被譽為密碼編碼學的聖杯。但產生和分發大量隨機密鑰的困難使它的實際應用受到很大限制,從另一方面來說安全性也更加無法保證。

第二次世界大戰中,在破譯德國著名的「恩格瑪(Enigma)」密碼機密碼過程中,原本是以語言學家和人文學者為主的解碼團隊中加入了數學家和科學家。電腦之父亞倫·圖靈(Alan Mathison Turing)就是在這個時候加入了解碼隊伍,發明了一套更高明的解碼方法。同時,這支優秀的隊伍設計了人類的第一部電腦來協助破解工作。顯然,越來越普及的計算機也是軍工轉民用產品。美國人破譯了被稱為「紫密」的日本「九七式」密碼機密碼。靠前者,德國的許多重大軍事行動對盟軍都不成為秘密;靠後者,美軍炸死了偷襲珍珠港的元兇日本艦隊總司令山本五十六。

同樣在二次世界大戰中,印第安納瓦霍土著語言被美軍用作密碼,從吳宇森導演的《風語者》Windtalkers中能窺其一二。所謂風語者,是指美國二戰時候特別征摹使用的印第安納瓦約(Navajo)通信兵。在二次世界大戰日美的太平洋戰場上,美國海軍軍部讓北墨西哥和亞歷桑那印第安納瓦約族人使用約瓦納語進行情報傳遞。納瓦約語的語法、音調及詞彙都極為獨特,不為世人所知道,當時納瓦約族以外的美國人中,能聽懂這種語言的也就一二十人。這是密碼學和語言學的成功結合,納瓦霍語密碼成為歷史上從未被破譯的密碼。

1975年1月15日,對計算機系統和網路進行加密的DES(Data Encryption Standard數據加密標准)由美國國家標准局頒布為國家標准,這是密碼術歷史上一個具有里程碑意義的事件。

1976年,當時在美國斯坦福大學的迪菲(Diffie)和赫爾曼(Hellman)兩人提出了公開密鑰密碼的新思想(論文"New Direction in Cryptography"),把密鑰分為加密的公鑰和解密的私鑰,這是密碼學的一場革命。

1977年,美國的里維斯特(Ronald Rivest)、沙米爾(Adi Shamir)和阿德勒曼(Len Adleman)提出第一個較完善的公鑰密碼體制——RSA體制,這是一種建立在大數因子分解基礎上的演算法。

1985年,英國牛津大學物理學家戴維·多伊奇(David Deutsch)提出量子計算機的初步設想,這種計算機一旦造出來,可在30秒鍾內完成傳統計算機要花上100億年才能完成的大數因子分解,從而破解RSA運用這個大數產生公鑰來加密的信息。

同一年,美國的貝內特(Bennet)根據他關於量子密碼術的協議,在實驗室第一次實現了量子密碼加密信息的通信。盡管通信距離只有30厘米,但它證明了量子密碼術的實用性。與一次性便箋密碼結合,同樣利用量子的神奇物理特性,可產生連量子計算機也無法破譯的絕對安全的密碼。

2003,位於日內瓦的id Quantique公司和位於紐約的MagiQ技術公司,推出了傳送量子密鑰的距離超越了貝內特實驗中30厘米的商業產品。日本電氣公司在創紀錄的150公里傳送距離的演示後,最早將在明年向市場推出產品。IBM、富士通和東芝等企業也在積極進行研發。目前,市面上的產品能夠將密鑰通過光纖傳送幾十公里。美國的國家安全局和美聯儲都在考慮購買這種產品。MagiQ公司的一套系統價格在7萬美元到10萬美元之間。

G. 尋找量子密碼學相關資料

密碼學是研究編制密碼和破譯密碼的技術科學。研究密碼變化的客觀規律,應用於編制密碼以保守通信秘密的,稱為編碼學;應用於破譯密碼以獲取通信情報的,稱為破譯學,總稱密碼學。

密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段。依照這些法則,變明文為密文,稱為加密變換;變密文為明文,稱為脫密變換。密碼在早期僅對文字或數碼進行加、脫密變換,隨著通信技術的發展,對語音、圖像、數據等都可實施加、脫密變換。

密碼學是在編碼與破譯的斗爭實踐中逐步發展起來的,並隨著先進科學技術的應用,已成為一門綜合性的尖端技術科學。它與語言學、數學、電子學、聲學、資訊理論、計算機科學等有著廣泛而密切的聯系。它的現實研究成果,特別是各國政府現用的密碼編制及破譯手段都具有高度的機密性。

進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。密碼體制的基本類型可以分為四種:錯亂——按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;代替——用一個或多個代替表將明文字母或數碼等代替為密文;密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文;加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。

20世紀70年代以來,一些學者提出了公開密鑰體制,即運用單向函數的數學原理,以實現加、脫密密鑰的分離。加密密鑰是公開的,脫密密鑰是保密的。這種新的密碼體制,引起了密碼學界的廣泛注意和探討。

利用文字和密碼的規律,在一定條件下,採取各種技術手段,通過對截取密文的分析,以求得明文,還原密碼編制,即破譯密碼。破譯不同強度的密碼,對條件的要求也不相同,甚至很不相同。

中國古代秘密通信的手段,已有一些近於密碼的雛形。宋曾公亮、丁度等編撰《武經總要》「字驗」記載,北宋前期,在作戰中曾用一首五言律詩的40個漢字,分別代表40種情況或要求,這種方式已具有了密本體制的特點。

1871年,由上海大北水線電報公司選用6899個漢字,代以四碼數字,成為中國最初的商用明碼本,同時也設計了由明碼本改編為密本及進行加亂的方法。在此基礎上,逐步發展為各種比較復雜的密碼。

在歐洲,公元前405年,斯巴達的將領來山得使用了原始的錯亂密碼;公元前一世紀,古羅馬皇帝凱撒曾使用有序的單表代替密碼;之後逐步發展為密本、多表代替及加亂等各種密碼體制。

二十世紀初,產生了最初的可以實用的機械式和電動式密碼機,同時出現了商業密碼機公司和市場。60年代後,電子密碼機得到較快的發展和廣泛的應用,使密碼的發展進入了一個新的階段。

密碼破譯是隨著密碼的使用而逐步產生和發展的。1412年,波斯人卡勒卡尚迪所編的網路全書中載有破譯簡單代替密碼的方法。到16世紀末期,歐洲一些國家設有專職的破譯人員,以破譯截獲的密信。密碼破譯技術有了相當的發展。1863年普魯士人卡西斯基所著《密碼和破譯技術》,以及1883年法國人克爾克霍夫所著《軍事密碼學》等著作,都對密碼學的理論和方法做過一些論述和探討。1949年美國人香農發表了《秘密體制的通信理論》一文,應用資訊理論的原理分析了密碼學中的一些基本問題。

自19世紀以來,由於電報特別是無線電報的廣泛使用,為密碼通信和第三者的截收都提供了極為有利的條件。通信保密和偵收破譯形成了一條斗爭十分激烈的隱蔽戰線。

1917年,英國破譯了德國外長齊默爾曼的電報,促成了美國對德宣戰。1942年,美國從破譯日本海軍密報中,獲悉日軍對中途島地區的作戰意圖和兵力部署,從而能以劣勢兵力擊破日本海軍的主力,扭轉了太平洋地區的戰局。在保衛英倫三島和其他許多著名的歷史事件中,密碼破譯的成功都起到了極其重要的作用,這些事例也從反面說明了密碼保密的重要地位和意義。

當今世界各主要國家的政府都十分重視密碼工作,有的設立龐大機構,撥出巨額經費,集中數以萬計的專家和科技人員,投入大量高速的電子計算機和其他先進設備進行工作。與此同時,各民間企業和學術界也對密碼日益重視,不少數學家、計算機學家和其他有關學科的專家也投身於密碼學的研究行列,更加速了密碼學的發展。

現在密碼已經成為單獨的學科,從傳統意義上來說,密碼學是研究如何把信息轉換成一種隱蔽的方式並阻止其他人得到它。
密碼學是一門跨學科科目,從很多領域衍生而來:它可以被看做是信息理論,卻使用了大量的數學領域的工具,眾所周知的如數論和有限數學。
原始的信息,也就是需要被密碼保護的信息,被稱為明文。加密是把原始信息轉換成不可讀形式,也就是密碼的過程。解密是加密的逆過程,從加密過的信息中得到原始信息。cipher是加密和解密時使用的演算法。
最早的隱寫術只需紙筆,現在稱為經典密碼學。其兩大類別為置換加密法,將字母的順序重新排列;替換加密法,將一組字母換成其他字母或符號。經典加密法的資訊易受統計的攻破,資料越多,破解就更容易,使用分析頻率就是好辦法。經典密碼學現在仍未消失,經常出現在智力游戲之中。在二十世紀早期,包括轉輪機在內的一些機械設備被發明出來用於加密,其中最著名的是用於第二次世界大戰的密碼機Enigma。這些機器產生的密碼相當大地增加了密碼分析的難度。比如針對Enigma各種各樣的攻擊,在付出了相當大的努力後才得以成功。

傳統密碼學

Autokey密碼
置換密碼
二字母組代替密碼 (by Charles Wheatstone)
多字母替換密碼
希爾密碼
維吉尼亞密碼
替換密碼
凱撒密碼
ROT13
仿射密碼
Atbash密碼
換位密碼
Scytale
Grille密碼
VIC密碼 (一種復雜的手工密碼,在五十年代早期被至少一名蘇聯間諜使用過,在當時是十分安全的)

對傳統密碼學的攻擊

頻率分析
重合指數

現代演算法,方法評估與選擇工程

標准機構

the Federal Information Processing Standards Publication program (run by NIST to proce standards in many areas to guide operations of the US Federal government; many FIPS Pubs are cryptography related, ongoing)
the ANSI standardization process (proces many standards in many areas; some are cryptography related, ongoing)
ISO standardization process (proces many standards in many areas; some are cryptography related, ongoing)
IEEE standardization process (proces many standards in many areas; some are cryptography related, ongoing)
IETF standardization process (proces many standards (called RFCs) in many areas; some are cryptography related, ongoing)
See Cryptography standards

加密組織

NSA internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for internal use; NSA is charged with assisting NIST in its cryptographic responsibilities)
GCHQ internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for GCHQ use; a division of GCHQ is charged with developing and recommending cryptographic standards for the UK government)
DSD Australian SIGINT agency - part of ECHELON
Communications Security Establishment (CSE) — Canadian intelligence agency.

公開的努力成果

the DES selection (NBS selection process, ended 1976)
the RIPE division of the RACE project (sponsored by the European Union, ended mid-'80s)
the AES competition (a 'break-off' sponsored by NIST; ended 2001)
the NESSIE Project (evaluation/selection program sponsored by the European Union; ended 2002)
the CRYPTREC program (Japanese government sponsored evaluation/recommendation project; draft recommendations published 2003)
the Internet Engineering Task Force (technical body responsible for Internet standards -- the Request for Comment series: ongoing)
the CrypTool project (eLearning programme in English and German; freeware; exhaustive ecational tool about cryptography and cryptanalysis)

加密散列函數 (消息摘要演算法,MD演算法)

加密散列函數
消息認證碼
Keyed-hash message authentication code
EMAC (NESSIE selection MAC)
HMAC (NESSIE selection MAC; ISO/IEC 9797-1, FIPS and IETF RFC)
TTMAC 也稱 Two-Track-MAC (NESSIE selection MAC; K.U.Leuven (Belgium) & debis AG (Germany))
UMAC (NESSIE selection MAC; Intel, UNevada Reno, IBM, Technion, & UCal Davis)
MD5 (系列消息摘要演算法之一,由MIT的Ron Rivest教授提出; 128位摘要)
SHA-1 (NSA開發的160位摘要,FIPS標准之一;第一個發行發行版本被發現有缺陷而被該版本代替; NIST/NSA 已經發布了幾個具有更長'摘要'長度的變種; CRYPTREC推薦 (limited))
SHA-256 (NESSIE 系列消息摘要演算法, FIPS標准之一180-2,摘要長度256位 CRYPTREC recommendation)
SHA-384 (NESSIE 列消息摘要演算法, FIPS標准之一180-2,摘要長度384位; CRYPTREC recommendation)
SHA-512 (NESSIE 列消息摘要演算法, FIPS標准之一180-2,摘要長度512位; CRYPTREC recommendation)
RIPEMD-160 (在歐洲為 RIPE 項目開發, 160位摘要;CRYPTREC 推薦 (limited))
Tiger (by Ross Anderson et al)
Snefru
Whirlpool (NESSIE selection hash function, Scopus Tecnologia S.A. (Brazil) & K.U.Leuven (Belgium))

公/私鑰加密演算法(也稱 非對稱性密鑰演算法)

ACE-KEM (NESSIE selection asymmetric encryption scheme; IBM Zurich Research)
ACE Encrypt
Chor-Rivest
Diffie-Hellman (key agreement; CRYPTREC 推薦)
El Gamal (離散對數)
ECC(橢圓曲線密碼演算法) (離散對數變種)
PSEC-KEM (NESSIE selection asymmetric encryption scheme; NTT (Japan); CRYPTREC recommendation only in DEM construction w/SEC1 parameters) )
ECIES (Elliptic Curve Integrated Encryption System; Certicom Corp)
ECIES-KEM
ECDH (橢圓曲線Diffie-Hellman 密鑰協議; CRYPTREC推薦)
EPOC
Merkle-Hellman (knapsack scheme)
McEliece
NTRUEncrypt
RSA (因數分解)
RSA-KEM (NESSIE selection asymmetric encryption scheme; ISO/IEC 18033-2 draft)
RSA-OAEP (CRYPTREC 推薦)
Rabin cryptosystem (因數分解)
Rabin-SAEP
HIME(R)
XTR

公/私鑰簽名演算法

DSA(zh:數字簽名;zh-tw:數位簽章演算法) (來自NSA,zh:數字簽名;zh-tw:數位簽章標准(DSS)的一部分; CRYPTREC 推薦)
Elliptic Curve DSA (NESSIE selection digital signature scheme; Certicom Corp); CRYPTREC recommendation as ANSI X9.62, SEC1)
Schnorr signatures
RSA簽名
RSA-PSS (NESSIE selection digital signature scheme; RSA Laboratories); CRYPTREC recommendation)
RSASSA-PKCS1 v1.5 (CRYPTREC recommendation)
Nyberg-Rueppel signatures
MQV protocol
Gennaro-Halevi-Rabin signature scheme
Cramer-Shoup signature scheme
One-time signatures
Lamport signature scheme
Bos-Chaum signature scheme
Undeniable signatures
Chaum-van Antwerpen signature scheme
Fail-stop signatures
Ong-Schnorr-Shamir signature scheme
Birational permutation scheme
ESIGN
ESIGN-D
ESIGN-R
Direct anonymous attestation
NTRUSign用於移動設備的公鑰加密演算法, 密鑰比較短小但也能達到高密鑰ECC的加密效果
SFLASH (NESSIE selection digital signature scheme (esp for smartcard applications and similar); Schlumberger (France))
Quartz

密碼鑒定

Key authentication
Public key infrastructure
X.509
Public key certificate
Certificate authority
Certificate revocation list
ID-based cryptography
Certificate-based encryption
Secure key issuing cryptography
Certificateless cryptography

匿名認證系統

GPS (NESSIE selection anonymous identification scheme; Ecole Normale Supérieure, France Télécom, & La Poste)

秘密鑰演算法 (也稱 對稱性密鑰演算法)

流密碼
A5/1, A5/2 (GSM行動電話標准中指定的密碼標准)
BMGL
Chameleon
FISH (by Siemens AG)
二戰'Fish'密碼
Geheimfernschreiber (二戰時期Siemens AG的機械式一次一密密碼, 被布萊奇利(Bletchley)庄園稱為STURGEON)
Schlusselzusatz (二戰時期 Lorenz的機械式一次一密密碼, 被布萊奇利(Bletchley)庄園稱為[[tunny)
HELIX
ISAAC (作為偽隨機數發生器使用)
Leviathan (cipher)
LILI-128
MUG1 (CRYPTREC 推薦使用)
MULTI-S01 (CRYPTREC 推薦使用)
一次一密 (Vernam and Mauborgne, patented mid-'20s; an extreme stream cypher)
Panama
Pike (improvement on FISH by Ross Anderson)
RC4 (ARCFOUR) (one of a series by Prof Ron Rivest of MIT; CRYPTREC 推薦使用 (limited to 128-bit key))
CipherSaber (RC4 variant with 10 byte random IV, 易於實現)
SEAL
SNOW
SOBER
SOBER-t16
SOBER-t32
WAKE
分組密碼
分組密碼操作模式
乘積密碼
Feistel cipher (由Horst Feistel提出的分組密碼設計模式)
Advanced Encryption Standard (分組長度為128位; NIST selection for the AES, FIPS 197, 2001 -- by Joan Daemen and Vincent Rijmen; NESSIE selection; CRYPTREC 推薦使用)
Anubis (128-bit block)
BEAR (由流密碼和Hash函數構造的分組密碼, by Ross Anderson)
Blowfish (分組長度為128位; by Bruce Schneier, et al)
Camellia (分組長度為128位; NESSIE selection (NTT & Mitsubishi Electric); CRYPTREC 推薦使用)
CAST-128 (CAST5) (64 bit block; one of a series of algorithms by Carlisle Adams and Stafford Tavares, who are insistent (indeed, adamant) that the name is not e to their initials)
CAST-256 (CAST6) (128位分組長度; CAST-128的後繼者,AES的競爭者之一)
CIPHERUNICORN-A (分組長度為128位; CRYPTREC 推薦使用)
CIPHERUNICORN-E (64 bit block; CRYPTREC 推薦使用 (limited))
CMEA — 在美國行動電話中使用的密碼,被發現有弱點.
CS-Cipher (64位分組長度)
DESzh:數字;zh-tw:數位加密標准(64位分組長度; FIPS 46-3, 1976)
DEAL — 由DES演變來的一種AES候選演算法
DES-X 一種DES變種,增加了密鑰長度.
FEAL
GDES —一個DES派生,被設計用來提高加密速度.
Grand Cru (128位分組長度)
Hierocrypt-3 (128位分組長度; CRYPTREC 推薦使用))
Hierocrypt-L1 (64位分組長度; CRYPTREC 推薦使用 (limited))
International Data Encryption Algorithm (IDEA) (64位分組長度-- 蘇黎世ETH的James Massey & X Lai)
Iraqi Block Cipher (IBC)
KASUMI (64位分組長度; 基於MISTY1, 被用於下一代W-CDMA cellular phone 保密)
KHAZAD (64-bit block designed by Barretto and Rijmen)
Khufu and Khafre (64位分組密碼)
LION (由流密碼和Hash函數構造的分組密碼, by Ross Anderson)
LOKI89/91 (64位分組密碼)
LOKI97 (128位分組長度的密碼, AES候選者)
Lucifer (by Tuchman et al of IBM, early 1970s; modified by NSA/NBS and released as DES)
MAGENTA (AES 候選者)
Mars (AES finalist, by Don Coppersmith et al)
MISTY1 (NESSIE selection 64-bit block; Mitsubishi Electric (Japan); CRYPTREC 推薦使用 (limited))
MISTY2 (分組長度為128位: Mitsubishi Electric (Japan))
Nimbus (64位分組)
Noekeon (分組長度為128位)
NUSH (可變分組長度(64 - 256位))
Q (分組長度為128位)
RC2 64位分組,密鑰長度可變.
RC6 (可變分組長度; AES finalist, by Ron Rivest et al)
RC5 (by Ron Rivest)
SAFER (可變分組長度)
SC2000 (分組長度為128位; CRYPTREC 推薦使用)
Serpent (分組長度為128位; AES finalist by Ross Anderson, Eli Biham, Lars Knudsen)
SHACAL-1 (256-bit block)
SHACAL-2 (256-bit block cypher; NESSIE selection Gemplus (France))
Shark (grandfather of Rijndael/AES, by Daemen and Rijmen)
Square (father of Rijndael/AES, by Daemen and Rijmen)
3-Way (96 bit block by Joan Daemen)
TEA(小型加密演算法)(by David Wheeler & Roger Needham)
Triple DES (by Walter Tuchman, leader of the Lucifer design team -- not all triple uses of DES increase security, Tuchman's does; CRYPTREC 推薦使用 (limited), only when used as in FIPS Pub 46-3)
Twofish (分組長度為128位; AES finalist by Bruce Schneier, et al)
XTEA (by David Wheeler & Roger Needham)
多表代替密碼機密碼
Enigma (二戰德國轉輪密碼機--有很多變種,多數變種有很大的用戶網路)
紫密(Purple) (二戰日本外交最高等級密碼機;日本海軍設計)
SIGABA (二戰美國密碼機,由William Friedman, Frank Rowlett, 等人設計)
TypeX (二戰英國密碼機)
Hybrid code/cypher combinations
JN-25 (二戰日本海軍的高級密碼; 有很多變種)
Naval Cypher 3 (30年代和二戰時期英國皇家海軍的高級密碼)
可視密碼

有密級的 密碼 (美國)

EKMS NSA的電子密鑰管理系統
FNBDT NSA的加密窄帶話音標准
Fortezza encryption based on portable crypto token in PC Card format
KW-26 ROMULUS 電傳加密機(1960s - 1980s)
KY-57 VINSON 戰術電台語音加密
SINCGARS 密碼控制跳頻的戰術電台
STE 加密電話
STU-III 較老的加密電話
TEMPEST prevents compromising emanations
Type 1 procts

破譯密碼

被動攻擊
選擇明文攻擊
選擇密文攻擊
自適應選擇密文攻擊
暴力攻擊
密鑰長度
唯一解距離
密碼分析學
中間相會攻擊
差分密碼分析
線性密碼分析
Slide attack cryptanalysis
Algebraic cryptanalysis
XSL attack
Mod n cryptanalysis

弱密鑰和基於口令的密碼

暴力攻擊
字典攻擊
相關密鑰攻擊
Key derivation function
弱密鑰
口令
Password-authenticated key agreement
Passphrase
Salt

密鑰傳輸/交換

BAN Logic
Needham-Schroeder
Otway-Rees
Wide Mouth Frog
Diffie-Hellman
中間人攻擊

偽的和真的隨機數發生器

PRNG
CSPRNG
硬體隨機數發生器
Blum Blum Shub
Yarrow (by Schneier, et al)
Fortuna (by Schneier, et al)
ISAAC
基於SHA-1的偽隨機數發生器, in ANSI X9.42-2001 Annex C.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) Appendix 3.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) revised Appendix 3.1 (CRYPTREC example)

匿名通訊
Dining cryptographers protocol (by David Chaum)
匿名投遞
pseudonymity
匿名網路銀行業務
Onion Routing

法律問題

Cryptography as free speech
Bernstein v. United States
DeCSS
Phil Zimmermann
Export of cryptography
Key escrow and Clipper Chip
Digital Millennium Copyright Act
zh:數字版權管理;zh-tw:數位版權管理 (DRM)
Cryptography patents
RSA (now public domain}
David Chaum and digital cash
Cryptography and Law Enforcement
Wiretaps
Espionage
不同國家的密碼相關法律
Official Secrets Act (United Kingdom)
Regulation of Investigatory Powers Act 2000 (United Kingdom)

術語

加密金鑰
加密
密文
明文
加密法
Tabula recta

書籍和出版物

密碼學相關書籍
密碼學領域重要出版物

密碼學家

參見List of cryptographers

密碼技術應用

Commitment schemes
Secure multiparty computations
電子投票
認證
數位簽名
Cryptographic engineering
Crypto systems

雜項

Echelon
Espionage
IACR
Ultra
Security engineering
SIGINT
Steganography
Cryptographers
安全套接字層(SSL)
量子密碼
Crypto-anarchism
Cypherpunk
Key escrow
零知識證明
Random oracle model
盲簽名
Blinding (cryptography)
數字時間戳
秘密共享
可信操作系統
Oracle (cryptography)

免費/開源的密碼系統(特指演算法+協議+體制設計)

PGP (a name for any of several related crypto systems, some of which, beginning with the acquisition of the name by Network Associates, have not been Free Software in the GNU sense)
FileCrypt (an open source/commercial command line version of PGP from Veridis of Denmark, see PGP)
GPG (an open source implementation of the OpenPGP IETF standard crypto system)
SSH (Secure SHell implementing cryptographically protected variants of several common Unix utilities, First developed as open source in Finland by Tatu Ylonen. There is now OpenSSH, an open source implementation supporting both SSH v1 and SSH v2 protocols. There are also commercial implementations.
IPsec (網際網路協議安全IETF標准,IPv6 IETF 標準的必須的組成部分)
Free S/WAN (IPsec的一種開源實現

其它軍事學分支學科

軍事學概述、射擊學、彈道學、內彈道學、外彈道學、中間彈道學、終點彈道學、導彈彈道學、軍事地理學、軍事地形學、軍事工程學、軍事氣象學、軍事醫學、軍事運籌學、戰役學、密碼學、化學戰

H. 討論一下量子通信,潘建偉是騙子還是神人

量子通信是指利用量子糾纏效應進行信息傳遞的一種新型的通訊方式。

  1. 量子通訊是近二十年發展起來的新型交叉學科,是量子論和資訊理論相結合的新的研究領域。

  2. 量子通信主要涉及:量子密碼通信、量子遠程傳態和量子密集編碼等,近來這門學科已逐步從理論走向實驗,並向實用化發展。高效安全的信息傳輸日益受到人們的關注。基於量子力學的基本原理,並因此成為國際上量子物理和信息科學的研究熱點。

  3. 量子通信主要有兩種方式,一種是利用量子的不可克隆性質生成量子密碼,他是二進制形式的,可以給經典的二進制信息加密,這種通信方式稱為「量子密鑰分發」。我們下一節會單獨介紹。

  4. 第二種是利用量子糾纏用來傳輸量子信息的最基本單位——量子比特。兩個處於糾纏態的粒子A和B,不論它們分開多遠,我們把其中一個粒子(A)和攜帶想要傳輸的量子比特的粒子(C)一起測量一下,C的量子比特馬上消失,但是B就馬上攜帶上了C之前攜帶的量子比特,我們把這個過程叫做「量子隱形傳態」。

  5. 根據量子力學「不確定性原理」,處於糾纏態的兩個粒子,在被觀測前,其狀態是不確定的,如果對其中一粒子進行觀測,在確定其狀態的同時(比如為上旋),另一粒子的狀態瞬間也會被確定(下旋)。

I. 基於糾纏交換的量子保密通信協議

這個課題要是沒學過的話是很深奧的,估計你只能寫綜述性的論文了,建議你看下陳漢武專主編的屬東南大學出版社出版的《量子信息與量子計算簡明教程》,基本上可以理解糾纏相關概念和糾纏交換的原理和過程。我本科畢業論文寫的就是量子密碼學,關於量子保密通信的有關理論和協議在網上也有介紹,可與我介紹的這本書結合著學習理解。

J. 量子密碼1984年就提出了為什麼還沒有應用

題主提出1984年,應該主要針對的是經典的BB84協議,科研工作者在此後的時間里不斷地將量子通信從理論向實驗室,再向廣域驗證,最後向實際應用不斷地推進。科學理論並不是一經提出就可以實現,理論中很多的技術仍需要不斷驗證以獲得應用,量子通信最早的驗證實驗也只是在實驗桌上傳輸厘米級的小段距離,之前發射的量子實驗衛星也是在衛星中繼的廣域量子通信驗證。而隨著技術的成熟,量子通信也離在保密通信領域的廣泛應用越來越近。

熱點內容
美發店認證 發布:2021-03-16 21:43:38 瀏覽:443
物業糾紛原因 發布:2021-03-16 21:42:46 瀏覽:474
全國著名不孕不育醫院 發布:2021-03-16 21:42:24 瀏覽:679
知名明星確診 發布:2021-03-16 21:42:04 瀏覽:14
ipad大專有用嗎 發布:2021-03-16 21:40:58 瀏覽:670
公務員協議班值得嗎 發布:2021-03-16 21:40:00 瀏覽:21
知名書店品牌 發布:2021-03-16 21:39:09 瀏覽:949
q雷授權碼在哪裡買 發布:2021-03-16 21:38:44 瀏覽:852
圖書天貓轉讓 發布:2021-03-16 21:38:26 瀏覽:707
寶寶水杯品牌 發布:2021-03-16 21:35:56 瀏覽:837